

Note: i) Answer *FIVE* full questions, selecting *ONE* full question from each *Unit*. *ii*) Thermodynamics data hand book/mollier diagram may be used.

UNIT - I

1.a.	Distinguish between extensive property and intensive property.	5
b.	What is a quasi-static process and how does it differ from a reversible process.	5
c.	Explain what you understand by thermodynamic equilibrium.	5
d.	A domestic food freezer maintains a temperature of -15°C, air temperature is 30°. If heat leaks	
	into the freezer at the continuous rate of 1.75 kJ/s. What is the least power necessary to pump	5
	these heat out continuously?	
2 a.	Write the thermodynamic definition of work. With a suitable example, explain how it is more	4
	general than the definition of work in mechanics.	4
b.	Obtain an equation for expansion or boundary work done for a closed system undergoing	
	change of state. Also show that for isothermal process $W_{1-2} = P_1 V_1 \log_e \left[\frac{V_2}{V_1} \right]$	8
c.	A fluid at a pressure of 3 bar, and with specific volume of 0.18m ³ /kg, contained in a cylinder	
	behind a piston expands reversibly to a pressure of 0.6bar according to a law $p = \frac{C}{V^2}$, where	6
	C is constant. Calculate the work done by the fluid on the piston.	
d.	Distinguish between point function and path function.	2
	UNIT - II	
3 a.	Explain first law of thermodynamics as applied to a closed system undergoing a closed cycle.	8
	Briefly describe an experiment to support it.	0
b.	When a system is taken from state a to b, in Fig. (1) along with acb, 84 kJ of heat flow into	
	the system, and the system does 32 kJ of work. i) How much will the heat that flows into the	
	system along path adb be, if he work done is 10.5 kJ?, ii) When the system is returned from b	8
	to a along the curved path, the work done on the system is 21 kJ. Does the system absorb or	0
	liberate heat, and how much of heat is absorbed or liberated? iii) If $U_a = 0$ and $U_d = 42$ kJ,	
	find the heat absorbed in the processes ad and db.	

c.	Define the specific heats t constant volume and constant pressure.	2
d.	What is a PMMI? Why is it impossible?	2
4 a.	Write the Kelvin –Planck and Clausius statements of second law of thermodynamics. Show	
	that the violation of Clausius statement leads to the possibility of a perpetual motion machine	10
	of the second kind.	
b.	A heat engine works on Carnot's cycle between 900°C and 200°C of this engine receives heat	6
	at the highest temperature at the rate of 50 kJ/s. Calculate the power of the Engine.	6
c.	Prove that (COP) _{HP} greater than unity.	4
	UNIT - III	
5.a.	Define the following :	
	(i) Pure substance (ii) Triple point	5
	(iii) critical Point (iv) Saturation state (v) Latent Heat	
b.	Draw pressure-Temperature and Temperature-Volume diagram for water. Name different	
	regions and salient points.	6
c.	The following observations were taken with a separating and throttling calorimeter arranged	
	in series.	
	Water separated = 2 kg, steam discharged from the throttling calorimeter = 20.5 kg,	7
	temperature of steam after throttling = 110°C, initial pressure = 12 bar abs,	7
	barometer = 760 mm of Hg, find pressure = 5 mm of Hg. Estimate the quality of steam	
	supplied. Take; $Cps = 2 kJ/kgK$.	
d.	What is the difference between an ideal and a perfect gas?	2
6 a.	Starting from the relation $Tds = du + pdv$, show that for an ideal gas undergoing reversible	8
	adiabatic process, the law for the process of given by $TU^{\gamma-1} = a$ constant	0
b.	Show that the entropy change of idea gas is given by the equation of the form	
	$S_2 - S_1 = C_p \ln \frac{V_2}{V_1} + C_v \ln \frac{P_2}{P_1}.$	8
c.	A vessel of capacity 3m ³ contains 1kg of mole of N ₂ at 90°C:	
	i) Calculate pressure and the specific volume of the gas	4

i) Calculate pressure and the specific volume of the gas
ii) If the ratio of specific heats is 1.4, evaluate the values of C_p and C_v.

Contd...3

Page No... 3

UNIT - IV

7 a.	Explain with T-S diagrams, limitations of Carnot cycle and how we can overcome the same in	0
	Rankine cycle.	8
b.	Discuss the effect of : i) Boiler Pressure ii) Condenses pressure	6
	iii) Super heat on the performance of a Rankine cycle.	
c.	In a steam power cycle, the steam supply is at 15 bar and dry and saturated. The condenses	
	pressure is 0.4 bar. Calculate the Carnot and Rankine efficiencies of the cycle. Neglect pump	6
	work.	
8 a.	Describe diesel cycle with P-V and T-S diagrams and derive an expression for efficiency in	10
	terms of compression ratio, cut off ratio and ratio of specific heats.	
b.	An engine working on Otto cycle has a volume of 0.45 m ³ , pressure 1 bar and temperature	
	30°C at the beginning of compression stroke. At the end of compression stroke, the pressure is	
	11 bar. 210 kJ of heat is added at constant volume. Determine;	
	i) Pressures, Temperatures and volume at salient points in the cycle.	10
	ii) Percentage clearance	
	iii) Efficiency	
	iv) Network percent	
	v) Mean effective Pressure.	
	UNIT - V	
9 a.	Derive the Thermal efficiency by representing schematic diagram of an ideal Brayton cycle	10
	with regenerator.	

- b. Air enters the compressor of a gas turbine plant operating on Brayton cycle at 101.325 kPa, 27°C. The pressure ratio in the cycle is 6. Calculate the maximum temperature in the cycle and the cycle efficiency. Assume $W_T = 2.5$ Wc, where W_T and W_C are the turbine and compressor work respectively. Take $\gamma = 1.4$.
- 10a. Define the following with respect to a reciprocating air compressor;6i) Isothermal efficiencyii) Isentropic efficiencyand iii) Mechanical efficiency
 - b. Derive an expression for volumetric efficiency of compressor in terms of clearance ratio, pressure ratio and index of compression.
 - c. A double acting air compressor of 18 cm diameter and 120 cm stroke runs at 120 rpm and operates between 1 bar and 10 bar, the lower temperature being 15°C. Estimate the power, 8 final temperature. Temperature rise, if the compression index be 1.3.