P13IP43 Page No... 1

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fourth Semester, B.E., - Industrial and Production Engineering Semester End Examination: June - 2016

	Engineering Thermodynamics						
_	Time: 3 hrs Max. Marks: 100						
1	Note: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Assume missing data suitably.						
	UNIT - I						
1 a	a. Represent the following on a p-v diagram:						
	(i) Quasistatic process, indicate also the work done during this process by shading	6					
	(ii) Non-Quasistatic process	U					
	(iii) A cycle.						
t	b. Derive an expression for the work done during a Quasistatic process governed by the equations	6					
	of the form $Pv = C$ with usual rotating.						
C	e. A platinum wire is used as a resistance thermometer. The wire resistance was found be 10 ohm						
and 16 ohm at ice point and steam point respectively and 30 ohm at the sulphur boiling							
	444.6°C. Find the resistance of the wire at 500°C, if the resistance varies with the temperature by	8					
	the relations $R = R_0 (1 + \alpha T + \beta T^2)$.						
2 a	a. With suitable examples, distinguish between:	0					
	(i) System and Control volume (ii) Path functions and point functions (iii) Process and cycle.	8					
t	b. Represent the following Quasistatic process on p-v diagram. Write expression for PdV work for						
	these; also indicate the PdV work done during these processes by shading,	6					
	(i) Process for which $PV = constant$ (ii) Process in which $PV^n = constant$.						
C	e. A certain fluid at 10 bar is contained in a cylinder behind a piston, the initial volume being						
	0.05 m ³ . Calculate the work done by the fluid when it expands reversibly,						
	(i) At constant pressure to a final volume of 0.2 m ³						
	(ii) According to a law $PV = constant$ to a final volume of 0.1 m ³ .						
	UNIT - II						
3 a	a. Write the first law of Thermodynamics as applied to a;	7					
	(i) Cycle (ii) A process (iii) A flow process and explain the terms.	/					
b	b. Represent Carnot cycle on P-V and T-S diagrams and indicate the various processes.	5					
C	e. A Carnot engine operates between two reservoirs at temperatures of T ₁ and T ₂ Kelvin. The work						
	output of the engine is 0.6 times the heat rejected. Given that the difference is temperature between the source and the sink is 200 K, calculate;	8					

(i) The source temperature (ii) The sink temperature

(iii) Efficiency of the engine.

Page No... 2

4 a. Derive an expression for the first law of thermodynamics as applied to a process involving a change of state and hence prove that energy is a property.

8

4

8

8

6

b. Fig. Q_n4 (b) represents a heat pump operating between two thermal reservoirs. Write an expression for the COP of the same. If this heat pump is reserved to a function as refrigeration's plant, what will be the COP term?

LOW temp

c. A heat engine drives a refrigerator whose COP is 4.5. If the efficiency of the heat engine is 35% and 1260 kJ of heat is removed per hour by the refrigerator from the cold body, find the rate of heat supplied per hour to the heat engine.

UNIT - III

5 a. Define the following: (i) Pure substance (ii) Saturations states (iii) Critical parameters (iv) Dryness fraction b. Show that for a reversible adiabatic process extended by an ideal gas pressure and volume are 6 related by PVⁿ = constant. c. A vessel contains 3 kg of water at 200°C. If the volume of the vessel is 0.3 m³. Determine the, 6 (iii) Specific enthalpy of the water vapour in the vessel. (i) Pressure (ii) Quality On any isobar represented on a T-S diagram for water, indicate the following conditions: (i) Sub cooled liquid (ii) Saturated liquid (iii) Saturated vapour 8 (iv) Super heated vapour (v) Wet vapour b. Show that for an ideal gas $C_P - C_V = R$. 6

Steam at 40 bar has a specific volume 0.028 m³/kg. What is the condition of steam? Find;

(ii) Specific internal energy

(i) Temperature of steam

(iii) Specific enthalpy.

UNIT - IV

7 a.	For a given T ₂ , show that the Rankine cycle efficiency depends on the mean temperature of heat additions.	6		
b.	Representing the Otto cycle on a T-S diagram, derive an expression for air standard efficiency of	6		
	the same with usual notations.			
c.	An ideal diesel engine has a diameter of 15 cm and stroke of 20 cm, the clearance volume is			
	10% of the swept volume. Determine the compression ratio and the air standard efficiency of the	8		
	engine if the cut-off takes place at 6% of the stroke.			
8 a. When is reheating of steam is recommended in a steam power plant? Represent a single s				
	reheat Ranking cycle on a T-S diagram and write expressions for efficiency and steam rate.			
b.	Represent Otto and diesel cycles on P-V and T-S diagrams and name the different processes.	6		
c.	An engine equipped with a cylinder having a bore of 15 cm and a stroke of 45 cm operates on	6		
	Otto cycle. If the clearance volume is 2000 cm ³ , compute the air standard efficiency.			
	UNIT - V			
9 a.	Show that the efficiency of the Brayton cycle depends only on the pressure ratio; also represent	8		
	the cycle on P-V and T- S diagrams.	0		
b.	Draw the P-V diagram for a two stage compressor with perfect inter cooling between states.	6		
	Show the saving in work done by shading; also represent the isothermal line.			
c.	A single stage reciprocating compressor takes 1 m ³ of air per minute at 1.013 bar and 15°C and			
	delivers it at 7 bar. Assuming that the law of compression is $PV^{1.35} = C$ and that clearance is	6		
	negligible, calculate the indicated power.			
10 a.	With the help of T-S diagram, explain the effect of regeneration on Brayton cycle efficiency.	6		
b.	Define volumetric efficiency as applied to compressors. Derive an expression for the same with	0		
	usual notations.	8		
c.	Which compression process needs minimum work input and which the maximum? Support your	6		
	answer with the help of a P-V diagram.			