	P1	3IP65 Page No 1	
	4	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Sixth Semester, B.E Industrial and Production Engineering Semester End Examination; June - 2016 Quality Assurance and Reliability	
		ime: 3 hrs Max. Marks: 100 te: i) Answer FIVE full questions, selecting ONE full question from each unit.	
	110	<i>ii) Missing data may suitably be assumed.</i> <i>iii) Use of Handbook data permitted.</i> UNIT - I	
1	a.	Explain the history of quality control methodology.	10
	b.	Briefly discuss the importance of quality costs with relevant examples.	10
2	a.	List the scope of Quality Assurance.	8
	b.	What is quality audit and why it is required for organizations? List and discuss the activities	1.0
		which are usually audited in organizations.	12
		UNIT - II	
3	a.	What is variability and mention the reasons for variability.	10
	b.	Explain the six sigma concept of process capability.	10
4	a.	Explain the following errors with diagram :	10
		i) Type-I error ii) Type-II error.	10
	b.	Samples of n = 5 units are taken from a process every hour. The \overline{x} and R values for a particular	
		quality characteristic are determined. After 25 samples have been collected, we calculate $\overline{x} = 20$	
		and $\overline{R} = 4.56$.	
		(i) What are the three-sigma control limits for \overline{x} and R?	
		(ii) Both charts exhibit control. Estimate the process standard deviation.	10
		(iii) Assume that the process output is normally distributed. If the specifications are 19±5, what	
		are your conclusions regarding the process capability?	
		(iv) If the process mean shirt to 24, what is the probability of not detecting this shift on the first	

UNIT - III

5 a. Briefly discuss the situations for choosing a proper type of variable and attribute charts.

subsequent sample.

b. A control chart is used to control the fraction non confirming for a plastic part manufactured in an injection molding process. Ten sub groups yield the data in Table.

10

10

Sample number	Sample size	Number Non confirming			
1	100	10			
2	100	15			
3	100	31			
4	100	18			
5	100	24			
6	100	12			
7	100	23			
8	100	15			
9	100	8			
10	100	8			

(i) Set up a control chart for the number of non confirming in samples of n = 100, (ii) for the chart established in part (i), what is the probability of detecting a shift in the process fraction non confirming to 0.30 on the first sample after the shift has occurred?

6 a. Write a note on :

i) P chart ii) C chart.

b. The perfect circle company manufactures once each hour a sample of 125 finished bushings is draw in from the output; each bushing is examined by a technicians those which fail are classified as defectives, the rest are satisfactory. Here are data on ten consecutive samples taken in one week.

Sample No.	1	2	3	4	5	6	7	8	9	10	
Defective	15	13	16	11	13	14	20	25	30	45	1

(i) What type of control chart should be used here?

(ii) What are processes of CL, UCL, and LCL?

- (iii) What Statistic should be plotted on the control chart for?
- (iv) Draw the control chart on a graph.
- (v) What should the quality control engineer do?

UNIT - IV

7 a. Briefly write a note on the following :

(i) OC curves (ii) Double sampling Plans.

b. A single sampling plan is as follows :

N = 5000; n = 100; C = 3

- (i) Plot the OC curve
- (ii) Determine the AQL and LTPD for Pr = 10%, Cr = 15 respectively.
- (iii) What is the ATI the above places for 1.5% defective of the incoming lot.

6

8

12

P13IP65

Page No... 3

- 8 a. What are Lot acceptance sampling Plans? Discuss the different kinds of Lot Acceptance Plans 10 (LASPs).
 - b. In a double sampling plan N = 5000, $n_1 = 100$, $n_2 = 100$, $C_2 = 1$,
 - (i) Use Poisson's Table to compute the probability of acceptance of a 1% defective lot.

(ii) Assume that a lot rejected by this sampling plan will be 100% inspected. What will be the AOQ if the submitted product is 1% defective? Considering the inspection of both rejected lots, what will be the average number of articles inspected per lot if the submitted product is 1% defective.

UNIT - V

- 9 a. What is reliability and why is reliability important? Explain with neat sketch the bath tub curve.
 10
 b. List and explain the different types of reliability or reliability estimators.
 6
 - c. Find the mean time to failure of a component which has a failure rate of 2 failures per year.
 Calculate its reliability for different mission times, e.g.10, 1000, 10000 hours.
- 10 a. What do you mean by design for reliability? Briefly discuss the methods for introducing redundancy in to a system for improving reliability.
 - b. A simple electronic circuit consist of 6 transistors each having a failure rate of 10^{-6} f/hr, 4 diodes each having a failure rate 0.5×10^{-6} f/hr, 3 capacitors each having a failure rate of 0.2×10^{-6} f/hr, 10 resistors each having a failure rate of 5×10^{-6} f/hr and 2 switches each having a failure rate 2×10^{-6} f/hr. Assuming connectors and wiring are 100% reliable, evaluate the equivalent failure rate of the system and the probability of the system surviving 1000 and 10000 hours if all components must operate for system success.

10

* * * *