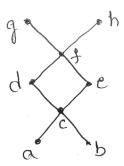
P08IS34 Page No.		
	U.S.N	
	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E. – Information Science and Engineering Semester End Examination; Dec 2014 Discrete mathematical Structure	
-	ne: 3 hrs Max. Marks: 100 : i) Answer FIVE full questions, selecting ONE full question from each Unit.	
	ii) Assume suitable missing data if any.	
4	Unit - I	
1 a.	Using Venn diagram PT for any three sets A, B, C	7
	$(A \cup B) \cap C = (\overline{A} \cap \overline{B}) \cup \overline{C}$	
b.	Define power set, and for any sets A, B, C, D prove by using the laws of set theory that,	C
	$(A \cap B) \cup (A \cap B \cap \overline{C} \cap D) \cup (\overline{A} \cap B) = B$	6
c.	Determine the co-efficient of :	
	i) x^9y^3 in the expression $(2x-3y)^{12}$	7
	ii) xyz^2 in the expression $(2x - y - z)^4$	
2 a.	In a sample of 100 logic chips, 23 have a defect D_1 , 26 have a defect D_2 , 30 have a defect	
	D_3 , 7 have defects D_1 and D_2 . 8 have defects D_1 and D_3 , 10 have defects D_2 and D_3 , and 3 have all the 3 defects. Find the number of chips having (i) at least one defect ii) no defect.	6
h	A problem given to four students A, B, C, D whole chances of solving it are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$	
0.	respectively, find the probability that the problem is solved.	6
c.	Find how many distinct four digit integers one can make from the digits 1, 3, 3, 7, 7, 8.	8
	Unit - II	
3 a.	Prove the validity of the given arguments using role of inference,	
	$(\neg pV \neg q) \rightarrow (r \land s)$	
	$r \rightarrow t$	7
	$\frac{\neg t}{}$	
1	$\therefore p$	
D.	Give i) a direct proof ii) an indirect proof for the given statement "If n is an odd integer : then $n + 9$ is an even integer"	6
c.	Prove that for any three propositions p, q, r {using truth table}	
	$\{(p \to q) \land (q \to r)\} \to (p \to r)$ is a tautology.	7

P08]	IS34 Page No 2	
4 a.	Find whether the following argument is valid:	
	No engineering student of first or second semester studies logic	8
	Anil is an Engineering student who studies logic	0
	: Anil is not in second semester.	
b.	Prove the logical equivalences using laws of logic,	-
	$(p \to q) \land [\neg q \land (r \lor \neg q)] \Leftrightarrow \neg (q \lor p)$	7
c.	Define quantified statements, and its truth valves.	5
	Unit - III	
5 a.	Prove that for each $n \in Z^+$	0
	$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$ using mathematical induction.	8
b.	A sequence $\{an\}$ is defined recursively by $a_1 = 4, a_n = a_{n-1} + n$ for $n \ge 2$. Find an in explicit	7
	form.	,
c.	Explain different types of functions.	5
6 a.	Let $f: R \to R$ be defined by	
	$f(x) = \begin{cases} 3x - 5 \text{ for } x > 0\\ -3x + 1 \text{ for } x \le 0 \end{cases}$	
	Determine;	8
	$f(0), f(-1), f(\frac{5}{3})$	
	$f^{-1}(1), f^{-1}(-3), f^{-1}(-6)$	
	$f^{-1}([-5,5])$	
b.	Evaluate : $S(5,4) \& S(8,6)$	6
c.	Prove that in any set of 29 persons, atleast five persons must have born on the same day of the week.	б
	Unit - IV	
7 a.	Let R be a relation defined as $a+b =$ even iff $(a,b) \in R$ on	
	$A = \{1, 2, 3, 5, 6, 10\}$	
	i) Write the relation matrix of R.	8
	ii) Prove that R is an equivalence relation	
	iii) Draw the digraph of the relation.	
b.	Draw the Hasse diagram for give sets based on divisibility condition.	
	$i)A = \{1, 2, 3, 5, 6, 10, 15, 30\}$	6
	$ii)B = \{2, 4, 8, 16, 32\}$	
	Contd3	

6
6
0
7

below.



7

8

4

10

If $B = \{c, d, e\}$ find (if they exists)

i) all upper bound of B

ii) all lower bound of B

Unit - V

- 9 a. Let G be the set of all non-zero real numbers and let $a * b = \frac{1}{2}ab$. Show that (G, *) is an Abelian group.
 - b. The word C = 1010110 is sent through a binary symmetric channel. If P = 0.02 is the probability of incorrect receipt of a signal. Find the probability that 'C' is received as r = 1011111. Determine the error pattern.
 - c. Define subgroup, cyclic group.

10 a. The generator matrix for an encoding function $E: Z_2^3 \to Z_2^6$ is given by

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

i) find the code words assigned to 110 and 010.

ii) Obtain the associated parity - check matrix.

- iii) hence decode the received words : 110110, 111101
- b. Define homomorphism and Isomorphism between two groups G₁ to G₂
 c. Write short notes on Encoding and Decoding functions.
 4

* * * * *