P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belgaum)
 Third Semester, B.E. - Information Science and Engineering
 Semester End Examination; Dec. - 2014
 Discrete mathematical Structure

Time: 3 hrs
Max. Marks: 100
Note : i) Answer FIVE full questions, selecting ONE full question from each Unit.
ii) Assume suitable missing data if any.

Unit - I

1 a. Using Venn diagram PT for any three sets A, B, C

$$
\overline{(A \cup B) \cap C}=(\bar{A} \cap \bar{B}) \cup \bar{C}
$$

b. Define power set, and for any sets A, B, C, D prove by using the laws of set theory that, $(A \cap B) \cup(A \cap B \cap \bar{C} \cap D) \cup(\bar{A} \cap B)=B$
c. Determine the co-efficient of :
i) $x^{9} y^{3}$ in the expression $(2 x-3 y)^{12}$
ii) xyz^{2} in the expression $(2 x-y-z)^{4}$

2 a. In a sample of 100 logic chips, 23 have a defect $D_{1}, 26$ have a defect $D_{2}, 30$ have a defect $D_{3}, 7$ have defects D_{1} and $D_{2} .8$ have defects D_{1} and $D_{3}, 10$ have defects D_{2} and D_{3}, and 3 have all the 3 defects. Find the number of chips having (i) atleast one defect ii) no defect.
b. A problem given to four students A, B, C, D whole chances of solving it are $1 / 2,1 / 3,1 / 4,1 / 5$ respectively, find the probability that the problem is solved.
c. Find how many distinct four digit integers one can make from the digits $1,3,3,7,7,8$.

Unit - II

3 a. Prove the validity of the given arguments using role of inference,
$(\neg p V \neg q) \rightarrow(r \wedge s)$
$r \rightarrow t$
$\neg t$
$\therefore p$
b. Give i) a direct proof ii) an indirect proof for the given statement "If n is an odd integer : then $n+9$ is an even integer"
c. Prove that for any three propositions p, q, r \{using truth table\} $\{(p \rightarrow q) \wedge(q \rightarrow r)\} \rightarrow(p \rightarrow r)$ is a tautology.

4 a . Find whether the following argument is valid:
No engineering student of first or second semester studies logic
Anil is an Engineering student who studies logic
\therefore Anil is not in second semester.
b. Prove the logical equivalences using laws of logic,
$(p \rightarrow q) \wedge[\neg q \wedge(r \vee \neg q)] \Leftrightarrow \neg(q \vee p)$
c. Define quantified statements, and its truth valves.

Unit - III

5 a. Prove that for each $\mathrm{n} \in \mathrm{Z}^{+}$
$1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots+n^{2}=1 / 6 n(n+1)(2 n+1)$ using mathematical induction.
b. A sequence $\{a n\}$ is defined recursively by $a_{1}=4, a_{n}=a_{n-1}+n$ for $n \geq 2$. Find an in explicit form.
c. Explain different types of functions.

6 a. Let $f: R \rightarrow R$ be defined by
$f(x)=\left\{\begin{array}{l}3 x-5 \text { for } x>0 \\ -3 x+1 \text { for } x \leq 0\end{array}\right.$
Determine;
$f(0), f(-1), f(5 / 3)$
$f^{-1}(1), f^{-1}(-3), f^{-1}(-6)$
$f^{-1}([-5,5])$
b. Evaluate : $S(5,4) \& S(8,6)$
c. Prove that in any set of 29 persons, atleast five persons must have born on the same day of the week.

Unit - IV

7 a. Let R be a relation defined as $a+b=$ even iff $(a, b) \in R$ on
$A=\{1,2,3,5,6,10\}$
i) Write the relation matrix of R.
ii) Prove that R is an equivalence relation
iii) Draw the digraph of the relation.
b. Draw the Hasse diagram for give sets based on divisibility condition.

$$
\begin{aligned}
& \text { i) } A=\{1,2,3,5,6,10,15,30\} \\
& \text { ii) } B=\{2,4,8,16,32\}
\end{aligned}
$$

c. Define partial order, total order and equivalence relation with example each.

8 a. Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ consider the partition $\mathrm{P}=\{\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{e}\}\}$ of A . Find the equivalence relation inducing this partition.
b. Draw the Hasse diagram representing the positive divisors of 45 .
c. Define Lattice, LUB, GLB of a poset, consider the Hasse diagram of a poset (A, R) given below.

If $B=\{c, d, e\}$ find (if they exists)
i) all upper bound of B
ii) all lower bound of B
Unit - V

9 a. Let G be the set of all non-zero real numbers and let $a * b=1 / 2 a b$. Show that (G, *) is an Abelian group.
b. The word $\mathrm{C}=1010110$ is sent through a binary symmetric channel. If $\mathrm{P}=0.02$ is the probability of incorrect receipt of a signal. Find the probability that ' C ' is received as $r=1011111$. Determine the error pattern.
c. Define subgroup, cyclic group.

10 a . The generator matrix for an encoding function $E: Z_{2}^{3} \rightarrow Z_{2}^{6}$ is given by

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

i) find the code words assigned to 110 and 010 .
ii) Obtain the associated parity - check matrix.
iii) hence decode the received words : 110110, 111101
b. Define homomorphism and Isomorphism between two groups G_{1} to G_{2}
c. Write short notes on Encoding and Decoding functions.

