Esperant cedit of	

U.S.N					
0.0.1					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. – Information Science and Engineering Semester End Examination; Dec. - 2014

	Digital Design	
Tin	ne: 3 hrs Max. Marks: 100	
Note	e: i) Answer FIVE full questions, selecting ONE full question from each Unit. ii) Assume suitable missing data if any.	
	Unit - I	
1 a.	With the help of K - map, simplify the given function and get the minimal SOP and POS	
	expression and give the logic circuit using logic gates.	10
	$f(A, B, C, D) = \sum m(1, 2, 3, 6, 8, 9, 10, 12, 13, 14)$	
b.	Write the algorithm for generating prime implicants with a suitable example of your choice.	10
2 a.	Prove the following laws:	
	i) Idempotent ii) involution law	10
	iii) De Morgan's Law iv) Associative law using postulates.	
b.	With an example of your choice explain:	10
	i) 5- variable maps ii) 6 – variable maps.	10
	Unit - II	
3 a.	With neat sketches explain the concept of carry look ahead adder in detail.	10
b.	Define encoder, with neat sketches explain $8 - to - 3$ line encoder along with its truth table.	10
4 a.	Define multiplexer. Explain the concept of $4 - to - 1$ line multiplexer along with its logic	10
	diagram, truth table and symbol.	10
b.	Explain the concept of a 1 – bit comparator along with its truth table and circuit diagram.	10
	Unit - III	
5 a.	Write short notes on the following with relevant circuit diagrams:	10
	i) PLD ii) PLA	10
b.	Explain a 2 – bit A/D converter in detail.	10
6 a.	Write a note on PROM and PAL.	10
b.	Explain the working of a 8 – bit D/A converter using R/2R resistors with suitable sketches.	10
	Unit - IV	
7 a.	Give a clocked JK master slave logic circuit and explain how race around condition is	
	resolved. Give both block diagram using clocked S – R FF and also using only NAND – to –	10
	NAND gate network.	
b.	Explain Jhonson counter and sequence generator with suitable circuit diagrams.	10

P13IS32

Page No... 2

8 a. Give the diagram of 4 – bit bi directional shift register with parallel load. Explain how shift

8 a.	Give the diagram of 4 – bit bi directional shift register with parallel load. Explain how shift	1.0	
	right, shift left and parallel load can be performed.	10	
b.	With an example of your choice explain with relevant diagrams and truth tables for the		
	following concepts:	10	
	i) Ring counter. ii) Sequence detector.		
	Unit - V		
9 a.	Design synchronous $MOD-10$ up counter using $S-R$ flip flop. Give excitation table of $S-$	10	
	R flip flop, state diagram and state table.	10	
b.	Design a 3 – bit binary up counter using 'T' flip flops with relevant calculations.	10	
10 a. Differentiate between mealy model of a clocked synchronous sequential network and Moore		10	
	model of a clocked synchronous sequential network.		
b.	Explain the following concepts related to sequential circuits:		
	i) State transition diagram	10	
	ii) State synthesis table	10	
	iii) State reduction technique.		

* * * * *