P13IS35 Page No 1			
U.S.N U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E Information Science and Engineering			
Semester End Examination; Dec 2015			
Computer Organization			
Time: 3 hrs Max. Marks: 100 Note: Answer FIVE full quantions, selecting ONE full quantion from each unit.			
<i>Note:</i> Answer FIVE full questions, selecting ONE full question from each unit . UNIT - I			
1 a. List the steps needed to execute the machine instruction – Add R_1 , R_2 , R_3 .	6		
b. With a diagram, explain the connections between the processor and memory.	6		
c. Explain the basic performance equation of a computer. Further indicate different ways to	4		
increase the performance.	4		
d. Show the little-endian and big-endian representation of multi byte data - 26AC4B17 h,	4		
starting from memory address 6000 h.	т		
2 a. With a suitable diagram, explain basic input/output operations.	8		
b. Explain any six data addressing modes with suitable example.	6		
c. Represent the decimal (-10) and 51, as a signed 7 bit number in the following binary formats :	3		
(i) sign –and-magnitude (ii) 1's complement (iii) 2's complement	5		
d. Convert the following pairs of decimal numbers to 5 bit, signed, 2's complement binary			
numbers and add them. State whether or not overflow occurs in each case :	3		
(i) -14 and 11 (ii) 7 and 13			
UNIT - II			
3 a. Describe two methods to handle interrupt requests from multiple devices.	8		
b. Explain the distributed arbitration scheme.	8		
c. With a neat diagram, explain I/O interface for an input device.	4		
4 a. List down the steps carried out during a disk read operation on a SCSI bus.	8		
b. With a diagram, explain the input operation on a synchronous bus.	8		
c. Define DMA. Explain the registers involved in a DMA operation.	4		
UNIT - III			
5 a. Give three differences between static RAM and dynamic RAM. Explain the role of memory	O		
controller with a diagram	8		

controller with a diagram.b. Explain the organization of 1K x 1b memory chip.c. Write brief description of :
(i) Double-data-rate SDRAM (ii) Latency and bandwidth (iii) EEPROM6

P13I	S35 Page No 2	
6. a.	Mention one advantage and one drawback of associative cache mapping. Explain direct	8
	mapped Cache in detail.	0
b.	Explain two methods of memory interleaving.	8
c.	A block-set-associative cache consists of a total of 64 blocks divided into 4-block sets.	
	Consisting of 128 words,	4
	(i) How many bits are there in memory address?	4
	(ii) How many bits are there in each of the TAG, SET and WORD fields?	
UNIT - IV		
7 a.	Explain the working of 16 bit carry lookahead adder built using 4 bit adders. Mention the time	10
	required to perform 16 bit addition.	10
b.	Compute the product of 010111 x 110110 assuming numbers to be signed 2's complement	8
	using both Booth's and Bit-pair coding methods.	0
c.	Mention the best case and worst case multiplier for Booth's multiplication method.	2
8 a.	Show all the steps while performing 1000÷11, using non restoring-division method.	6
b.	What is the need for floating point representation? Explain IEEE single -precision format in	8
	detail	0
c.	List the steps to be carried out to perform addition and multiplication of 2 floating point	6
	numbers.	0
UNIT - V		
9 a.	Draw the diagram to show input and output gating for registers. Further explain :	
	(i) Register transfer	7
	(ii) Performing arithmetic or logic operation.	
b.	With a diagram explain 3-buses organization.	8
c.	Explain hard wired control unit, along with a circuit to generate a control signal.	5
10 a.	Justify the statement "pipeline increases throughput" using a 4-stages pipeline.	10
b.	Briefly explain three possible ways of connecting processors in a multi-processor system.	10

* * * *