U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Information Science and Engineering Make-up Examination; Jan/Feb - 2017 Computer Organization

Time: 3 hrs Max. Marks: 100 *Note:* Answer *FIVE* full questions, selecting *ONE* full question from each unit. UNIT - I 10 1 a. With a block diagram, explain how the memory and the processor are connected? b. Define the following terms: i) Processor clock 6 ii) Basic performance equation. c. List the steps needed to execute the machine instruction Add LOCA, R₀. 4 2 a. Define addressing modes. Explain indirect and index addressing modes with example. 8 b. With the help of a program, explain the function of conditional branch instruction. 6 Represent the decimal values 5, -2 and -10 in the following binary format: i) Sign and Magnitude 6 ii) 1's complement iii) 2's complement. **UNIT - II** Describe the three possibilities of enabling and disabling interrupts. 6 3 a. Explain the daisy chain method to handle interrupt request from multiple devices. 6 With a diagram, explain centralized arbitration scheme. 8 4 a. Explain the input transfer on a synchronous bus using timing diagram. 10 Explain a general 8-bit parallel interface circuit. 10 **UNIT - III** 5 a. Explain how static RAM cells are implemented with a circuit diagram. 6 b. Describe the internal organization of a 2M x 8 DRAM chip. 10 Define the following: i) Memory Access Time 4 ii) Memory Cycle Time. 6 a. Explain PROM and EPROM. 6 b. Explain the direct mapping cache technique. 6 With a diagram, describe the method of translating virtual memory address into physical 8

address in main memory.

P15IS35	Page No 2
7151835	Page No 2

UNIT - IV

7 a.	Design and explain a 4-bit carry-look ahead adder.	6		
b.	Write the Booth multiplier recording table and perform 13x-06 using Booth algorithm.	6		
c.	List the steps followed in restoring division algorithm and compute 11001 ÷ 100 using the			
	same.	8		
8 a.	Explain single precision and double precision floating point formats.	8		
b.	Describe the hardware implementation of floating point addition-subtraction unit.	12		
	UNIT - V			
9 a.	Explain the process of fetching a word from memory with an example.	10		
b.	List the actions and control sequence required for execution of the instruction Add (R3), R1.	10		
10 a.	Describe the hardware control unit organization with block diagram.	8		
b.	Show the three possible ways of implementing a multiprocessor system with block diagram.	12		