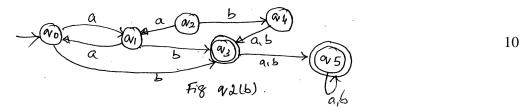



*Note: i) Answer FIVE full questions, selecting ONE full question from each Unit. ii) Assume suitable missing data if any.* 

## UNIT - I


1. a. Define Symbols, Alphabets, strings and languages, with analysis.6b. Construct a DFA to accept the language 
$$L = \{w(ab+ba) | w \in \{a,b\}^*\}$$
6

c. Construct the following NFA to its equivalent DFA.

2 a. Convert the following NFA to equivalent DFA.

$$0 \xrightarrow{\mathbf{a}} 1 \xrightarrow{\mathbf{b}} 2 \xrightarrow{\mathbf{c}} 3 \xrightarrow{$$

b. Find the minimized DFA from the following DFA.

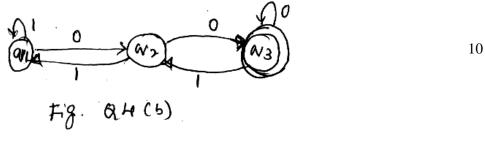


UNIT - II

- 3 a. Write the regular expression for
  - (i)  $L = \{a^n b^m | n \ge 4 \text{ and } m \le 3\}$
  - (ii)  $L = \left\{ a^{2n} b^{2m} \mid n \ge 0 \text{ and } m \ge 0 \right\}$
  - (iii)  $L = \{w \in \{a, b\} | \text{ ending with b and no substring aa} \}$
  - (iv)  $L = \{w \in \{a, b\} \mid \text{ starting with a and ending with } b\}$

8

Page No... 2


4

## P08IS43

b. Obtain NFA for the following regular expression :

(i)  $R = ab(a+b)^*$  (ii)  $R = (a+b)^* aa(a+b)^*$ 

- c. Explain the application of Regular expressions.
- 4 a. State and prove pumping Lemma for regular languages and show that  $L = \{ww^R | w \in (0+1)^*\}$ is not regular.
  - b. Convert the following DFA to regular expression using Kleen's theorem.





5 a. Write a CFG for :

(i) 
$$L = \{a^m b^n | m \neq n\}$$
 (ii)  $L = \{a^n w w^R b^n | w \in \Sigma^* n \ge 1\}$  8

b. Obtain the left most derivation and parse tree for the string aaabbabbba using the following grammar.

$$S \rightarrow aB|bA$$
 6

A→aS|bAA|a

 $B \rightarrow bS|aBB|b|$ 

c. What is ambiguous grammar? Show that the following grammar is ambiguous on the string aaaa.

$$S \rightarrow aS|X$$

- X→aX|a
- 6. a. Eliminate the useless symbols in the grammar.

|                                                             | S→aA bB               | B→bB                               | $E \rightarrow aC d$     | 6 |  |
|-------------------------------------------------------------|-----------------------|------------------------------------|--------------------------|---|--|
|                                                             | A→aA a                | D→ab Ea                            |                          |   |  |
| b.                                                          | Define CNF a          | ert the following grammar into CNF | 0                        |   |  |
|                                                             | $S \rightarrow 0A 1B$ | $A \rightarrow 0AA 1S 1$           | $B \rightarrow 1BB 0S 0$ | 0 |  |
| c. Prove that CFL are closed under union and concatenation. |                       |                                    |                          |   |  |

## P08IS43

Page No... 3

8

UNIT - IV

| 7 a. | Design a PDA to accept the language | $L = \{ww^{R}   w \in (a, b)^{*}\}$ by final state and show the | 12 |
|------|-------------------------------------|-----------------------------------------------------------------|----|
|      | acceptance of string $w = abbbba$ . |                                                                 |    |

b. For the CFG :

 $S \rightarrow aABC$ 

A→aB|a

```
B \rightarrow bA|b
```

```
С→а
```

obtain the corresponding PDA.

8.a. Obtain a PDA to accept the language  $L = \{a^n b^{2n} | n > 1\}$  and show the acceptance of string w = aabbbb.

b. Define DPDA, Prove that PDA to accept the language  $L = \{a^n b^n | n > 1\}$  by final state is deterministic.

## UNIT - V

| 9 a. | Explain with neat diagram, the working principle of TM model.                                |                          |    |  |  |
|------|----------------------------------------------------------------------------------------------|--------------------------|----|--|--|
| b.   | Design a Turing machine to accept all set of palindromes over {a, b}*. Also show that string |                          |    |  |  |
|      | acceptance for $w = ababa$ .                                                                 |                          |    |  |  |
| 10.  | Write a short notes on the following:                                                        |                          |    |  |  |
|      | (i) Post's Correspondence problem                                                            | (ii) Recursive languages | 20 |  |  |
|      | (iii) Multiple turing machine                                                                | (iv) halting problem     |    |  |  |

\* \* \* \* \*