U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

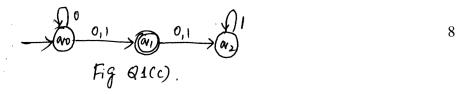
(An Autonomous Institution affiliated to VTU, Belgaum)

Fourth Semester, B.E. - Information Science and Engineering Semester End Examination; June/July - 2015 Finite Automata and Formal Languages

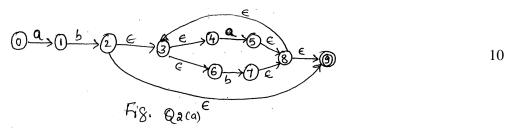
Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each Unit. ii) Assume suitable missing data if any.

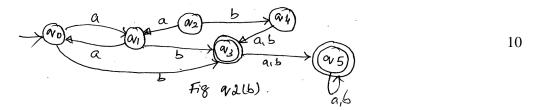
UNIT - I


1. a. Define Symbols, Alphabets, strings and languages, with analysis.

b. Construct a DFA to accept the language $L = \{w(ab+ba)|w \in \{a,b\}^*\}$


6

6


c. Construct the following NFA to its equivalent DFA.

2 a. Convert the following NFA to equivalent DFA.

b. Find the minimized DFA from the following DFA.

UNIT-II

3 a. Write the regular expression for

(i)
$$L = \left\{ a^n b^m \mid n \ge 4 \text{ and } m \le 3 \right\}$$

(ii)
$$L = \{a^{2n}b^{2m} | n \ge 0 \text{ and } m \ge 0\}$$

(iii) $L = \{w \in \{a,b\} | \text{ ending with b and no substring aa} \}$

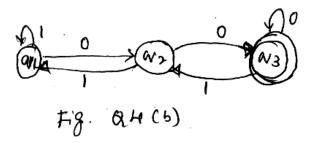
(iv) $L = \{w \in \{a, b\} | \text{ starting with a and ending with b} \}$

b. Obtain NFA for the following regular expression:

- (i) R = ab(a+b)*
- (ii) $R = (a+b)^* aa(a+b)^*$

8

c. Explain the application of Regular expressions.


4

⁴ a. State and prove pumping Lemma for regular languages and show that $L = \{ww^R | w \in (0+1)^*\}$ is not regular.

10

10

b. Convert the following DFA to regular expression using Kleen's theorem.

UNIT - III

5 a. Write a CFG for:

(i)
$$L = \left\{ a^m b^n \middle| m \neq n \right\}$$

(ii)
$$L = \left\{ a^n w w^R b^n \middle| w \in \Sigma * n \ge 1 \right\}$$

8

b. Obtain the left most derivation and parse tree for the string aaabbabbba using the following grammar.

 $S \rightarrow aB|bA$

6

 $A \rightarrow aS|bAA|a$

B→bS|aBB|b

c. What is ambiguous grammar? Show that the following grammar is ambiguous on the string aaaa.

6

 $S \rightarrow aS|X$

 $X\rightarrow aX|a$

6. a. Eliminate the useless symbols in the grammar.

S→aA|bB

 $B\rightarrow bB$

 $E \rightarrow aC|d$

6

 $A \rightarrow aA|a$

D→ab|Ea

b. Define CNF and GNF. Convert the following grammar into CNF

 $S \rightarrow 0A|1B$ $A \rightarrow 0AA|1S|1$ $B \rightarrow 1BB|0S|0$

8

c. Prove that CFL are closed under union and concatenation.

6

UNIT - IV

7 a.	Design a PDA to accept the language $L = \{ww^R w \in (a,b)^*\}$ by final state and show the	12									
	acceptance of string $w = abbbba$.	12									
b.	For the CFG:										
	S→aABC										
	$A{ ightarrow}aB a$										
	$B \rightarrow bA b$										
	C→a										
	obtain the corresponding PDA.										
8.a.	Obtain a PDA to accept the language $L = \{a^n b^{2n} n > 1\}$ and show the acceptance of string	12									
	w = aabbbb.	12									
b.	b. Define DPDA, Prove that PDA to accept the language $L = \{a^n b^n n > 1\}$ by final state is										
	deterministic.	8									
UNIT - V											
9 a.	Explain with neat diagram, the working principle of TM model.										
b.	b. Design a Turing machine to accept all set of palindromes over $\{a,b\}^*$. Also show that stri										
	acceptance for $w = ababa$.	14									
10.	Write a short notes on the following:										
	(i) Post's Correspondence problem (ii) Recursive languages	20									
	(iii) Multiple turing machine (iv) halting problem										

* * * * *