
| P13       | IS44                                                                                                                                                                                                                                                    |                    |        |                     |      | Рс              | ıge l  | No                   | 1    |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|---------------------|------|-----------------|--------|----------------------|------|
| antono, c | U.S.N                                                                                                                                                                                                                                                   |                    |        |                     |      |                 |        |                      |      |
|           | P.E.S. College of Engineering, Mandya - 571 401<br>(An Autonomous Institution affiliated to VTU, Belgaum)<br>Fourth Semester, B.E Information Science and Engineering<br>Semester End Examination; June/July - 2015<br>Analysis and Design of Algorithm |                    |        |                     |      |                 |        |                      |      |
|           | ne: 3 hrs                                                                                                                                                                                                                                               | action             | from   |                     |      |                 | Ma     | rks: 1               | .00  |
| NOL       | e: i) Answer <b>FIVE</b> full questions, selecting <b>ONE</b> full qu<br>ii) Assume suitable missing data if any.                                                                                                                                       | estion             | jron   | i eac               | :n U | nu.             |        |                      |      |
|           | UNIT - I                                                                                                                                                                                                                                                |                    |        |                     |      |                 |        |                      |      |
| 1.a. I    | Discuss the properties of algorithms with example and w                                                                                                                                                                                                 | rite no            | ote or | n im                | port | ant j           | probl  | em typ               | pes. |
| b. I      | Define Big O, Big $\Omega$ and Big O and prove that if $t_1$ (n) $\in$                                                                                                                                                                                  | Og <sub>1</sub> (n | ) and  | l t <sub>2</sub> (r | ı)∈  | Og <sub>2</sub> | (n) th | en t <sub>1</sub> (r | ı) + |
| t         | $(n) + t_2(n) \in O Max \{ g_1(n), g_2(n) \}.$                                                                                                                                                                                                          |                    |        |                     |      |                 |        |                      |      |
| 2 a. I    | Discuss the general plan for analysis of recursive and no                                                                                                                                                                                               | n – rec            | cursiv | ve al               | gori | thm             |        |                      |      |
| b. S      | olve the following recurrences                                                                                                                                                                                                                          |                    |        |                     |      |                 |        |                      |      |
| i         | M(n) = 2 m(n-1)+1 $n > 1, m(1) = 1$                                                                                                                                                                                                                     |                    |        |                     |      |                 |        |                      |      |
| i         | i) $A(n) = A(n) = A(n_2) + 1$ $n > 1, A(1) = 0$                                                                                                                                                                                                         |                    |        |                     |      |                 |        |                      |      |
| c. I      | Define recurrence relation with an example                                                                                                                                                                                                              |                    |        |                     |      |                 |        |                      |      |
|           | UNIT - II                                                                                                                                                                                                                                               |                    |        |                     |      |                 |        |                      |      |
|           | Write an algorithm for bubble sort, analysis's efficiency<br>8, 57, 9, 49,                                                                                                                                                                              | and a              | pply   | the                 | sam  | e oi            | ı 3, 4 | 1, 52,               | 26,  |
|           | Vrite an algorithm for quick sort, discuss the wors                                                                                                                                                                                                     | t case             | , av   | erag                | e ca | ase             | and    | best a               | case |
|           | fficiency of quick sort                                                                                                                                                                                                                                 |                    |        | U                   |      |                 |        |                      |      |
|           | Vrite an algorithm for binary search and draw the binary                                                                                                                                                                                                | tree v             | with   | ten r               | node | s lał           | beled  | 0,1,2,               | 9    |
| i         | s such a way that inorder and postorder traversal will li                                                                                                                                                                                               | st                 |        |                     |      |                 |        |                      |      |
| 9         | 9, 3, 1, 0, 4, 2, 7, 6, 8, 5 (inorder)                                                                                                                                                                                                                  |                    |        |                     |      |                 |        |                      |      |
| 9         | 9, 1, 4, 0, 3, 6, 7, 5, 8, 2 (postorder)                                                                                                                                                                                                                |                    |        |                     |      |                 |        |                      |      |
|           |                                                                                                                                                                                                                                                         |                    |        |                     |      |                 |        |                      |      |

b. Write the algorithm for DFS traversal and perform topological sorting on the given graph



10

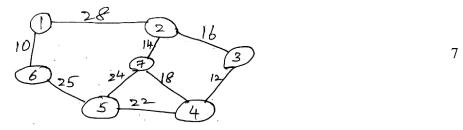
### P13IS44

## UNIT – III

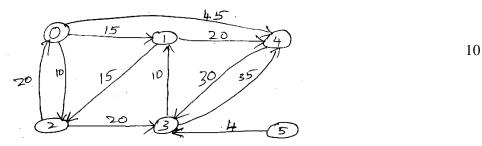
| 5 a. Write an algorithm for checking element uniqueness and computing a mode.                     | 10 |
|---------------------------------------------------------------------------------------------------|----|
| b. Explain the concept of balanced search tree with suitable examples.                            | 10 |
| 6. a. Write an algorithm for distributing counting sort and apply an $\{b, c, d, c, b, a, a, b\}$ | 10 |
| b. Write Horspool's string matching algorithm and apply on BESS_KNEW_ ABOUT_BAO                   | 10 |
|                                                                                                   | 10 |

# UNIT - IV

7 a. Write Warshall's algorithm to find transitive closure and apply the same on


BABS BAO BAB. The pattern string is BAO BAB.




b. Apply dynamic knapsack algorithm to solve the following problem

| Item | Weight | value |
|------|--------|-------|
| 1    | 7      | 42    |
| 2    | 3      | 12    |
| 3    | 4      | 40    |
| 4    | 5      | 25    |
|      | W = 10 |       |

8.a. Write kruskal's algorithm to find minimum cost spanning tree and apply the same on



b. Write Dijkstra's single source shortest path algorithm and apply the same on the given graph taking the source as 5



c. Compare and contrast Kruskal's with Prim's algorithm.

3

# P13IS44

Page No... 3

# UNIT - V

| Discuss the methods of establishing lower bound with examples                           |    |  |  |  |  |
|-----------------------------------------------------------------------------------------|----|--|--|--|--|
| b. Draw the decision tree for sorting problem and define P, NP, NP Complete Problems    | 10 |  |  |  |  |
| 10.a Show how back tracking solves 4x4 queens problem and apply back tracking on subset |    |  |  |  |  |
| problem $S = \{1, 3, 4, 5\} d = 11.$                                                    | 10 |  |  |  |  |

b. Apply branch and bound to knapsack problem given below.

| Item   | 1  | 2  | 3  | 4 | 5  | 6 |
|--------|----|----|----|---|----|---|
| Weight | 5  | 7  | 2  | 4 | 5  | 1 |
| Value  | 40 | 35 | 18 | 4 | 10 | 2 |
| W = 15 |    |    |    |   |    |   |

#### \* \* \* \* \*

10