


- b. Differentiate between NFA, DFA and E-NFA.
- c. Define transition diagram.
- 2 a. List any five applications of finite automata.
 - b. Convert the following NFA to its equivalent DFA.

c. Construct the DFA to accept strings of a's and b's having four a's.

UNIT - II

3 a.	List and explain any five applications of regular expression. Also give examples for each.	10
b.	Show that if L and M are regular languages, then $L \cap M$ is also regular.	5
c.	Show that if the language L is regular, then L^{R} is also regular.	5
4 a.	Write the regular expressions for the following :	
	i) $L(R) = \{w w \in \{0,1\}^* \text{ with at least three one occurrence of consecutive 0's.} \}$	10
	ii) $L = \left\{ a^n b^m m+n \text{ is even} \right\}$	

iii) $L = \{ w : n_a(w) \mod 3 = 0 \text{ where } w \in (a,b)^* \}$

iv)
$$L = \{vuv : v \in \{a, b\}^* \text{ and } |v| = 2\}$$

b. List and explain the properties of regular languages.

10

2

5

10

5

UNIT - III

5 a. What is the language generated by the grammar,

5 a.	What is the language generated by the grammar,		
	$S \rightarrow 0A \models$	5	
	$A \rightarrow 1S$		
b.	Obtain grammar to generate the language,	-	
	$L = \left\{ a^{n+2}b^n \mid n \ge 0 \text{ and } m > n \right\}$	5	
c.	Show that $L = \{a^n b^n c^n n \ge 1\}$ is not a context free.	10	
6. a. Prove that the following grammar is ambiguous :			
	$i) S \to a aAb abSb$		
	$A \rightarrow aAAb bS$	8	
	$ii) S \rightarrow iCtS \left iCtSeS \right a$		
	$C \rightarrow b$		
b.	Describe the Chomsky Hierarchy of the grammars.	12	
UNIT - IV			
7 a.	Prove that a language is accepted by a PDA by the empty stack if and only if the language is	10	
	accepted by a PDA by the final state.	10	
b.	Construct a PDA to accept a given language L by both the empty stack the final state where	10	
	$L = \left\{ a^n b^n, \text{ where } n \ge 1 \right\}$	10	
8 a.	Construct a PDA to accept the language		
	$L = \{W \subset W^R, where W \in (a,b) + and w^R is the reverse of w\}$ by the empty stack and by	12	
	the final state.		
b.	Explain the push down Automata with the help of a neat diagram.	8	
UNIT - V			
9 a.	Define and explain Turing machine.	6	
b.	Obtain the Turing machine to accept a palindrome consisting of a's and b's of any length.	14	
10 a.	Briefly explain the undecidable problems that are regular expressions.	8	
b.	Explain the post's correspondence problem and universal languages.	12	

* * * *