U.S.N					

It is raining.

Therefore, we will not go for shopping.

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

First Semester, Master of Computer Applications (MCA) Make-up Examination; Feb - 2017

Discrete Mathematical Structures

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

IINIT - I

	UNIT - I								
1 a.	How many 8 character password can be constructed selecting 5 alphabets followed by 3 digits								
	such that,	6							
	i) Without any restriction ii) Without repetition of a alphabets and digits	Ü							
	iii) Only vowels must be used.								
b.	b. How many positive integers n can be formed using the digits 3, 4, 4, 5, 5, 6, 7, if we want n to exceed 5,000,000 or even.								
c.	Find the number of ways in which 7 apples and 6 oranges are distributed among 5 children	en 7							
	such that each child must get atleast one apple.								
2 a.	2 a. For any three sets A B C verifies.								
	$A\Delta(B\Delta C) = (A\Delta B)\Delta C$								
b.	Determine $ A \cup B \cup C $ when								
	A = 50, B = 500, C = 5000								
	i) $A \subseteq B \subseteq C$ ii) $A \cap B = B \cap C = A \cap C = \phi$	7							
	iii) $ A \cap B = A \cap C = B \cap C = 3$ and $ A \cap B \cap C = 1$								
c.	When two fair dice are rolled what is the probability that;								
	i) 6 is the sum of two dice. ii) Sum is at least 7. iii) Sum is even.	7							
	UNIT - II								
3 a.	Define tautology and show that, $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$ is a tautology.								
b.	b. Prove the logical equivalence without using truth table.								
	$(p \to q) \land (\neg q \land (r \lor \neg q)) \approx q \land p$								
c.	Express symbolically and check validity of the given argument.								
	"If it rains, I'll not come to your house								
	If I come to your house, we will go for shopping.								

4 a. Define quantifiers with two examples for each.

b. If
$$p(m): x \ge 0$$
 $r(x): x^2 - 3x - 4 = 0$
 $q(x): x^2 \ge 0$ $s(x): x^2 - 3 > 0$

Find the truth value of the following,

i)
$$xp(x) \land q(x)$$
 ii) $\forall xp(x) \rightarrow q(x)$ iii) $\forall xr(x) \lor s(x)$ iv) $xp(x) \land r(x)$

c. Show that the argument is valid.

"No engineering student of first or second semester studies logic. Anil is an engineering 6 student who studies logic. :. Anil is not in second semester.

UNIT - III

5 a. Write a direct and indirect proof for the statement "If n is odd then n + 9 is even"

b. If
$$H_1 = 1$$
, $H_2 = 1 + \frac{1}{2}$, $H_3 = 1 + \frac{1}{2} + \frac{1}{3} ... H_n = 1 + \frac{1}{2} + ... + \frac{1}{n}$

are Harmonic numbers then $\forall n \in \mathbb{Z}^+$, $\sum_{i=1}^n H_i = (n+1)H_n - n$

c. Obtain the recursive definition for the sequence in each of the following,

i)
$$a_n = 5n$$
 ii) $b_n = 2 - (-1)^n$ iii) $a_n = 9n + 8$

6 a. Define stirlings number of second kind and evaluate S(8, 6).

b. Let f, g be two functions defined on Z, as

$$f(x) = 2x + 1, \quad g(x) = x^3 - x$$

find
$$fog(x), gof(x), fof(x), gog(x), f^{-1}(x), g^{-1}(x)$$

c. State pigeonhole principle. An office employs 13 clerks. Show that at least 2 of them will have birthdays during the same month of the year.

UNIT - IV

7 a. Let 'R' be a relation defined as "exactly divides on $A = \{1, 2, 3, 6, 20, 50, 80\}$

- i) Write M (R) ii) Prove that R is a partially ordered relation.
- iii) Draw the Hasse diagram of (A,R)

b. i) How many relations are there from A to B if |A| = 5 |B| = 4

- ii) How many binary relations are there on A
- iii) How many binary relations are there on B.
- iv) How many binary relations on A are reflexive relations?
- v) How many binary relations on B are reflexive relations?
- vi) How many are equivalence relation on A.

6

8

6

7

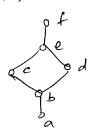
7

6

P15MCA12

Page No... 3

c. Define LUB, GLB of a subset $B = \{c, d, e\}$ of A whose Hasse diagram is given below.



- 8 a. Let A = $\{1, 2, 3, 4, 5\}$ and define R on A x A by (x, y), $R(x_2, y_2)$ iff $x_1 + y_1 = x_2 + y_2$
 - i) Verify that R is an equivalence relation on A x A
 - ii) Determine the partition induced by R on A x A.
 - b. Let $A = \{1, 2, 3, 4\}$ $B = \{w, x, y, z\}$ $C = \{5, 6, 7\}$

 $R_1: A \rightarrow B \text{ defined by } R_1 = \{(1, x) (2, x) (3, y) (3, z)\}$

 $R_2: B \rightarrow C$ defined by $R_2 = \{(w, 5) (x, 6)\}$

 $R_3: B \to C$ defined by $R_3 = \{(x, 5) (w, 6)\}$

Find $(R_1 \circ R_2)$, $(R_1 \circ R_3)$, $(R_1 \circ R_2) \cup (R_1 \circ R_3)$, $(R_1 \circ R_2) \cap (R_1 \circ R_3)$

c. Draw the Hasse diagram that represents positive divisors of 50, 100.

UNIT - V

- 9 a. Distinguish between:
 - i) Simple and multiple graphs
- ii) Connected and disconnected graphs
- 8

6

6

7

7

6

8

6

6

- iii) Euler graphs and Hamiltonian graphs.
- b. Define isomorphism between two graphs with an example.
- c. Write short notes on Konigsberg bridge problem related to origin of graph theory.
- 10 a Define; i) Rooted tree,
- ii) Binary tree
- iii) M ary tree
- iv) Complete m ary tree

6

- v) Balanced tree with an example for each.
- b. Construct an optimal prefix code tree for the message "HAPPY JOURNEY". Indicate the code that has been generated by the tree.
- c. Find the minimal spanning tree of the given connected graph using,
 - i) Prim's Algorithm
- ii) Krushkal's Algorithm

