

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum) First Semester - Master of Computer Applications (MCA)

Semester End Examination; Jan/Feb. - 2016
Discrete Mathematical Structures
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.
UNIT - I
1 a. Find the number of permutations of the letters of the word "MASSASAUGA". In how many ways of these all four A's are together? How many of them beginning with S ?
b. Find the value of n, so that $2 P(n, 2)+50=P(2 n, 2)$.
c. Prove the following identities :
(i) $\mathrm{C}(\mathrm{n}+1, \mathrm{r})=\mathrm{C}(\mathrm{n}, \mathrm{r}-1)+\mathrm{C}(\mathrm{n}, \mathrm{r})$
(ii) $\mathrm{C}(\mathrm{m}+\mathrm{n}, 2)-\mathrm{C}(\mathrm{m}, 2)-\mathrm{C}(\mathrm{n}, 2)=\mathrm{mn}$

2 a . Using laws of set theory show that:
$(A \cap B) \cup[(A \cap B) \cap(\bar{C} \cap D)] \cup(\bar{A} \cap B)=B$
b. Using Venn diagram P.T. $(A \Delta B) \Delta C=A \Delta(B \Delta C)$ for any three sets A, B, C.
c. 40 computer programmers interviewed for a job. 25 knew JAVA, 28 knew ORACLE and 7 knew neither language. How many knew both the languages.
d. A problem is given to 4 students. A, B, C, D whose chances of solving it are $1 / 2,1 / 3,1 / 4,1 / 5$ respectively. Find the probability that the problem is solved.

UNIT - II

3 a. Define tautology. Without constructing the truth table prove that:
$\{(p \vee q) \wedge \sim[\sim P \wedge(\sim q \vee \sim r)]\} \vee\{(\sim p \wedge \sim q) \vee(\sim p \wedge \sim r)]$ is a tautology.
b. By constructing the truth table, prove that $[p \leftrightarrow(q \leftrightarrow r)] \equiv[(p \leftrightarrow q) \leftrightarrow r]$.
c. Prove that the given argument is valid,
$p \rightarrow(q \wedge r)$
$r \rightarrow s$
$\frac{\sim(q \wedge s)}{\therefore \sim P}$
4 a. Explain Direct proof, Indirect proof and contradiction proof.
b. Consider the following open statements with the set of all real numbers as universe:
$p(x): x \geq 0, q(x): x^{2} \geq 0, \quad r(x): x^{2}-3 x-4=0, s(x)=x^{2}-370$

Determine the truth values of the following quantified statements :
i) $\exists x, p(x) \wedge q(x)$
ii) $\forall x, p(x) \rightarrow q(x)$
iii) $\forall x, \mathrm{q}(x) \rightarrow s(x)$
iv) $\forall x, \mathrm{r}(x) \vee s(x)$
v) $\exists x, p(x) \wedge r(x)$
c. Prove that the given argument is valid If $\Delta^{\text {le }}$ has 2 equal sides than it is isosceles
If $\Delta^{\text {le }}$ is isosceles than it has 2 equal angles
The $\Delta^{\text {le }} \mathrm{ABC}$ does not have 2 equal angles.
$\therefore \mathrm{ABC}$ does not have 2 equal angles.

UNIT - III

5 a. Using mathematical induction. Prove that,
$1+3+5+\ldots \ldots+(2 n-1)=n^{2} \quad \forall n \geq 1$
b. The Lucas numbers are defined recursively by $L_{0}=2, L_{1}=1$ and $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$. Evaluate L_{2} to L_{10} and also state induction principle.
c. Let $|A|=m$ and $|B|=n$. Find how any functions are possible from A to B. If there are 2187 functions from A to B and $|B|=3$ then what is $|A|$?

6 a. State stirling number of second kind and verify that $S(5,3)=25, S(7,2)=63$.
b. Prove that in any set of 29 persons atleast 5 persons must have been born on the same day of the week.
c. Consider the functions $\mathrm{f} \& \mathrm{~g}$ defined by $f(x)=x^{3}$ and $g(x)=x^{2}+1, \forall \mathrm{x} \in \mathrm{R}$. Find fog, gof, f^{2} and g^{2}.

UNIT - IV

7 a. Define POSET and construct the Hasse diagram of all + ve divisors of 36 .
b. If $\mathrm{A}=\{1,2,3,4,5,6\}$ and R is a relation on A defined by $\mathrm{R}=\{(1,2),(1,6),(2,3),(3,3)$, $(3,4),(4,1),(4,3),(4,5),(6,4)\}$
(i) List all the paths of length 3 originating at the vertex 1.
(ii) List all the cycles of length 4
(iii) List the length of path from 6 to 2.
c. If $A=A_{1} \cup A_{2} \cup A_{3}$, where $A_{1}=\{1,2\}, A_{2}=\{2,3,4\}$ and $A_{3}=\{5\}$. Define the relation R on A by xRy iff x and y are in the same set $\mathrm{A}_{\mathrm{i}}, \mathrm{i}=1,2,3$. Is R satisfies an equivalence relation.
8 a. On the set Z of all integers, a relation on R is defined by $a R b$ if $a^{2}=b^{2}$. Verify that R is an equivalence relation. Determine the partition induced.
b. For $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ the Hasse diagram for the $\operatorname{POSET}(\mathrm{A}, \mathrm{R})$ is as shown below :

(i) Determine the relation matrix for R
(ii) Construct the di-graph for R
(iii) Topologically sort the POSET (A,R)
c. Define : Maximal element, Minimal element Infimum and Supremum.

UNIT - V

9 a. Define:
(i) Degree of a vertex
(ii) Regular graph
(iii) Complete graph with example each.
b. Define Isomorphism. Verify whether the following graphs are isomorphic (or) not and justify.

c. Define tree. For every tree $T=(V, E)$. If $|V| \geq 2$, Show that, T has atleast 2 pendant Vertices.

10 a. Prove that a graph of order $n(\geq 2)$ consisting of a single cycle is 2 -chromatic if n is even and 3-chromatic if n is odd.
b. Construct an optimal prefix code for the frequencies $\{4,15,25,5,8,16\}$
c. Define minimal spanning tree. Write an algorithm to find minimal spanning tree using Prim's algorithm.

