P15MCA12		Page No 1	
	U.S.N		
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) First Semester - Master of Computer Applications (MCA) Semester End Examination; Jan/Feb 2016 Discrete Mathematical Structures			
Time: 3 hrs Note: Answer FIVE full an	uestions, selecting ONE full question	Max. Marks: 100 1 from each unit .	
1,000,11,00,00,12,1,2,500, 4 .	UNIT - I		
		d "MASSASAUGA". In how many	
•	's are together? How many of them		
	hat $2P(n, 2) + 50 = P(2n, 2)$.	6	
c. Prove the following ider (i) $C(n+1, r) = C(n, r-1)$		-C(m, 2) - C(n, 2) = mn 8	
2 a. Using laws of set theory		-C(m, 2) - C(n, 2) - mn	
$(A \cap B) \cup \left[(A \cap B) \cap \left(\overline{a} \right) \right]$		5	
b. Using Venn diagram P.7	$\Gamma. (A\Delta B)\Delta C = A\Delta (B\Delta C) \text{ for any th}$	nree sets A, B, C. 5	
	ers interviewed for a job. 25 knew How many knew both the languages	v JAVA, 28 knew ORACLE and 7 5.	
d. A problem is given	to 4 students. A, B, C, D w	vhose chances of solving it are	
$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ resp	ectively. Find the probability that th	e problem is solved. 5	
	UNIT - II		
3 a. Define tautology. Witho	out constructing the truth table prove		
$\left\{ \left(p \lor q \right) \land \sim \left[\sim P \land \left(\sim q \right) \right] \right\}$	$(\sim r)] \lor \langle (\sim p \land \sim q) \lor (\sim p \land \sim r) \rangle$] is a tautology. 7	
b. By constructing the truth	n table, prove that $[p \leftrightarrow (q \leftrightarrow r)] \equiv$	$\left[\left(p\leftrightarrow q\right)\leftrightarrow r\right].$	
c. Prove that the given arg	ument is valid,		
$p \rightarrow (q \wedge r)$			
$r \rightarrow s$		7	
$\frac{\sim (q \land s)}{\therefore \sim P}$			
4 a. Explain Direct proof, In	direct proof and contradiction proof.	. 7	
b. Consider the following of	open statements with the set of all re	eal numbers as universe:	
$p(x): x \ge 0, q(x): x^2$	$r \ge 0$, $r(x): x^2 - 3x - 4 = 0$, $s(x) =$	$x^2 - 370$ 6	

Contd.....2

P15MCA12

Page No... 2

7

6

8

7

7

6

Determine the truth values of the following quantified statements :

i) $\exists x, \ p(x) \land q(x)$ ii) $\forall x, \ p(x) \rightarrow q(x)$ iii) $\forall x, \ q(x) \rightarrow s(x)$ iv) $\forall x, \ r(x) \lor s(x)$ v) $\exists x, \ p(x) \land r(x)$

c. Prove that the given argument is valid

If Δ^{le} has 2 equal sides than it is isosceles

If Δ^{le} is isosceles than it has 2 equal angles

<u>The Δ^{le} ABC does not have 2 equal angles.</u>

 \therefore ABC does not have 2 equal angles.

UNIT - III

5 a. Using mathematical induction. Prove that,

 $1+3+5+\ldots+(2n-1) = n^2 \quad \forall \ n \ge 1$

- b. The Lucas numbers are defined recursively by $L_0 = 2$, $L_1 = 1$ and $L_n = L_{n-1}+L_{n-2}$ for $n \ge 2$. Evaluate L_2 to L_{10} and also state induction principle.
- c. Let |A| = m and |B| = n. Find how any functions are possible from A to B. If there are 2187 functions from A to B and |B| = 3 then what is |A|?
- 6 a. State stirling number of second kind and verify that S(5, 3) = 25, S(7, 2) = 63.
 - b. Prove that in any set of 29 persons at least 5 persons must have been born on the same day of the week.
 - c. Consider the functions f & g defined by $f(x) = x^3$ and $g(x) = x^2 + 1$, $\forall x \in \mathbb{R}$. Find fog, gof, f^2 and g^2 .

UNIT - IV

7 a. Define POSET and construct the Hasse diagram of all + ve divisors of 36. 7 b. If A = {1, 2, 3, 4, 5, 6} and R is a relation on A defined by R = {(1, 2), (1, 6), (2, 3), (3, 3), (3,4), (4,1), (4,3), (4,5), (6,4)(i) List all the paths of length 3 originating at the vertex 1. 7 (ii) List all the cycles of length 4 (iii) List the length of path from 6 to 2. c. If $A = A_1 \cup A_2 \cup A_3$, where $A_1 = \{1, 2\}$, $A_2 = \{2, 3, 4\}$ and $A_3 = \{5\}$. Define the relation R on A 6 by xRy iff x and y are in the same set A_i , i = 1, 2, 3. Is R satisfies an equivalence relation. 8 a. On the set Z of all integers, a relation on R is defined by aRb if $a^2 = b^2$. Verify that R is an 7 equivalence relation. Determine the partition induced. b. For $A = \{a, b, c, d, e\}$ the Hasse diagram for the POSET (A, R) is as shown below : 8

Contd.....3

5

6

7

(i) Determine the relation matrix for R

(ii) Construct the di-graph for R

(iii) Topologically sort the POSET (A,R)

c. Define : Maximal element, Minimal element Infimum and Supremum.

UNIT - V

9 a. Define:

algorithm.

(i) Degree of a vertex (ii) Regular graph (iii) Complete graph with example each.

b. Define Isomorphism. Verify whether the following graphs are isomorphic (or) not and justify.

c. Define tree. For every tree T = (V, E). If $ V \ge 2$, Show that, T has at least 2 pendant Vertices.	7
10 a. Prove that a graph of order $n \ge 2$ consisting of a single cycle is 2-chromatic if n is even and	
3-chromatic if n is odd.	
b. Construct an optimal prefix code for the frequencies {4, 15, 25, 5, 8, 16}	
c. Define minimal spanning tree. Write an algorithm to find minimal spanning tree using Prim's	7

* * *