P15MCA1	12 Page No 1						
	U.S.N						
P.E.S. College of Engineering, Mandya - 571 401							
(An Autonomous Institution affiliated to VTU, Belgaum)							
First Semester, Master of Computer Applications (MCA)							
Semester End Examination; Jan - 2017 Discrete Mathematical Structures							
Time: 3 h							
Note: Answ	swer FIVE full questions, selecting ONE full question from each unit.						
	UNIT - I						
1 a. A gentle	leman has 6 friends to invite. In how many ways can he send invitation cards to them,	6					
if he has	as 3 servants to carry the cards?	0					
b. State B	Binomial theorem and Multinomial theorem. Find the coefficient of $a^2b^3c^2d^5$ in the	7					
expansio	expansion $(a + 2b - 3c + 2d + 5)^{16}$. 7						
c. Find the	c. Find the number positive integer solutions of the equation,						
$x_1 + x_2 +$	$+x_3 + x_4 = 25 \qquad \forall x_i \ge 0.$	7					
2 a. Define s	symmetric differences of sets. For any 2 set A and B, simplify: $\overline{(\overline{(A \cup B) \cap C}) \cup \overline{B}}$.	6					
b. Show th	that $\overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B} \cup \overline{C})$ by membership method.	7					
c. Among	g the first 500 positive integers,						
i) Deter	rmine the integers which are not divisible by 2 nor by 3, nor by 5.	7					
ii) Determine the integers which are exactly divisible by one of them.							
UNIT - II							
3 a. Define	logical equivalence. By constructing the truth table, prove that						
$\left\{ \left[P \land \left(- \right) \right] \right\}$	$(\neg P \lor q)] \lor [q \land \neg (p \land q)] \} \equiv q.$	6					
b. By using	ng laws of logic theory, prove that $(p \leftrightarrow q) \leftrightarrow [(p \rightarrow q) \land (q \rightarrow p)]$ is tautology.	7					
c. State ru	rule of disjunctive syllogism and rule of disjunctive amplification. Test whether the						

given argument is valid (or) not?

$$p \to (q \to r)$$

$$\neg q \to \neg p$$

$$\frac{p}{\therefore r}$$
7

4 a. Write down the following propositions in symbolic form and also find their negations,i) For all integers 'n', If 'n' is not divisible by 2, then n is odd

ii) If all triangles are right angled then no triangle is equiangular.

Contd....2

6

P15MCA12

7

7

7

6

7

7

7

b. Prove that the given argument is valid,

$$\forall x, \quad p(x)q(x) \\ \neg p(x) \\ \neg q(x) \lor r(x) \\ \frac{s(x) \to \neg r(x)}{\therefore \neg s(a)}$$

$$7$$

c. Explain direct proof. Give a direct proof for the given statement,"Square of an odd integer is an odd integer".

UNIT - III

5 a.	Prove that, $4n \le n^2 - 7$, \forall integers i.e. $n \ge 6$ using mathematical induction.	6
b.	The Fibonacci numbers are defined recursively by $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.	
	Evaluate F_2 to F_{10} .	1
c.	Show that the closed binary operation f: R x R \rightarrow R defined by f(a, b) = $\begin{bmatrix} a & b \end{bmatrix}$ is	

- c. Show that the closed binary operation f: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by f(a, b) = |a+b| is commutative but not associative.
- 6 a. Define :

i) One-one function	ii) Onto function	iii) Identity function	6
iv) Constant function	v) Floor function	vi) Ceiling function with example each.	

b. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by, $f(x) = \begin{cases} 3x-5 & \text{for } x > 0 \\ -3x+1 & \text{for } x \le 0 \end{cases}$

Determine, $f(0), f(-5/3), f^{-1}(1), f^{-1}(-6), f^{-1}(3), f^{-1}([-5,5]), f^{-1}([-6,5]).$

c. State Pigeonhole principle. Let S = {3, 7, ..., 103}. How many elements must we select from S to insure that there will be at least two whose sum is 110?

UNIT - IV

- 7 a. If A is a set with *m* elements and B is a set with *n* elements. Find the number of relations from A to B: If there are 4096 relations from A to B and |B| = 3. Then what is |A| = ?
- b. Let A = {1, 2, 3, 4, 6, 8, 12} on A define relation R by "aRb". Iff "a divides b". Prove that R is a POSET on A. Draw the Hasse diagram for this relation.
- c. Let R = {(1, 2), (3, 4), (2, 2)} and S = {(4, 2), (2, 5), (3, 1), (1, 3)} be the relations on the set A = {1, 2, 3, 4, 5}. Find the following, $R \circ (R \circ S), R \circ (S \circ R), S \circ (R \circ S), S \circ (S \circ R)$.
- 8 a. Let f and g be the functions from R to R defined by f(x) = ax + b and $g(x) = 1 x + x^2$. If $gof(x) = 9x^2 - 9x + 3$. Determine a and b.
 - b. Define: i) Maximal element ii) Supremum iii) Infimum iv) Lattice.

P15MCA12

7

7

7

7

c. Consider the Hasse diagram of a poset (A, R) given below,

If B = {c, d, e} find;i) all upper bounds of B

tree.

iii) least upper bound of B

ii) all lower bounds of Biv) greatest lower bound of B.UNIT - V

9 a. Define simple graph. Prove that in any simple graph with n vertices, the number of edges is at

$$\operatorname{most} \frac{n(n-1)}{2}.$$

b. Define isomorphism. Prove that the graphs shown below are isomorphic,

- c. i) Define Euler and Hamiltonian graphs with examples.
- ii) Draw a graph which is both Euler and Hamiltonian.
 7
 iii) Draw a graph Hamiltonian but not Euler.
 10 a. Define minimally connected graph. Prove that a graph G is minimally connected iff it is a
 - b. Define planar and non planar graphs. How many edges must a planar graph must have, if it has 7 regions and 5 vertices? Draw one such graph.
 - c. Construct an optimal prefix code for the symbols a, o, q, u, y, z that occur with the frequencies 20, 28, 4, 17, 12, 7 respectively.