\section*{U.S.N | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
First Semester, Master of Computer Applications (MCA) Semester End Examination; Jan - 2017

Discrete Mathematical Structures
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.
UNIT - I
1 a. A gentleman has 6 friends to invite. In how many ways can he send invitation cards to them, if he has 3 servants to carry the cards?
b. State Binomial theorem and Multinomial theorem. Find the coefficient of $a^{2} b^{3} c^{2} d^{5}$ in the expansion $(a+2 b-3 c+2 d+5)^{16}$.
c. Find the number positive integer solutions of the equation,

$$
x_{1}+x_{2}+x_{3}+x_{4}=25 \quad \forall x_{i} \geq 0 .
$$

2 a. Define symmetric differences of sets. For any 2 set A and B, simplify: $\overline{(\overline{(A \cup B) \cap C}) \cup \bar{B}}$.
b. Show that $\overline{A \cup(B \cap C)}=\bar{A} \cap(\bar{B} \cup \bar{C})$ by membership method.
c. Among the first 500 positive integers,
i) Determine the integers which are not divisible by 2 nor by 3 , nor by 5 .
ii) Determine the integers which are exactly divisible by one of them.

UNIT - II
3 a. Define logical equivalence. By constructing the truth table, prove that $\{[P \wedge(\neg P \vee q)] \vee[q \wedge \neg(p \wedge q)]\} \equiv q$.
b. By using laws of logic theory, prove that $(p \leftrightarrow q) \leftrightarrow[(p \rightarrow q) \wedge(q \rightarrow p)]$ is tautology.

6
c. State rule of disjunctive syllogism and rule of disjunctive amplification. Test whether the given argument is valid (or) not?
$p \rightarrow(q \rightarrow r)$
$\neg q \rightarrow \neg p$
$\frac{p}{\therefore r}$
4 a . Write down the following propositions in symbolic form and also find their negations,
i) For all integers ' n ', If ' n ' is not divisible by 2 , then n is odd
ii) If all triangles are right angled then no triangle is equiangular.
b. Prove that the given argument is valid,

$$
\begin{aligned}
\forall x, & p(x) q(x) \\
& \neg p(x) \\
& \neg q(x) \vee r(x) \\
& \frac{s(x) \rightarrow \neg r(x)}{\therefore \neg s(a)}
\end{aligned}
$$

b. The Fibonacci numbers are defined recursively by $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$.

Evaluate F_{2} to F_{10}.
c. Show that the closed binary operation $\mathrm{f}: \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{a}, \mathrm{b})=|\bar{a}+\bar{b}|$ is commutative but not associative.

6 a. Define :
i) One-one function
ii) Onto function
iii) Identity function
iv) Constant function
v) Floor function
vi) Ceiling function with example each.
b. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by, $f(x)=\left\{\begin{array}{cc}3 x-5 & \text { for } x>0 \\ -3 x+1 & \text { for } x \leq 0\end{array}\right.$

Determine, $f(0), f(-5 / 3), f^{-1}(1), f^{-1}(-6), f^{-1}(3), f^{-1}([-5,5]), f^{-1}([-6,5])$.
c. State Pigeonhole principle. Let $S=\{3,7, \ldots, 103\}$. How many elements must we select from S to insure that there will be at least two whose sum is 110 ?

UNIT - IV

7 a. If A is a set with m elements and B is a set with n elements. Find the number of relations from A to B: If there are 4096 relations from A to B and $|B|=3$. Then what is $|A|=$?
b. Let $\mathrm{A}=\{1,2,3,4,6,8,12\}$ on A define relation R by "aRb". Iff "a divides b ". Prove that R is a POSET on A. Draw the Hasse diagram for this relation.
c. Let $R=\{(1,2),(3,4),(2,2)\}$ and $S=\{(4,2),(2,5),(3,1),(1,3)\}$ be the relations on the set $\mathrm{A}=\{1,2,3,4,5\}$. Find the following, $R \circ(R \circ S), R \circ(S \circ R), S \circ(R \circ S), S \circ(S \circ R)$.

8 a. Let f and g be the functions from R to R defined by $f(x)=a x+b$ and $g(x)=1-x+x^{2}$. If $g o f(x)=9 x^{2}-9 x+3$. Determine a and b.
b. Define: i) Maximal element ii) Supremum iii) Infimum iv) Lattice.
c. Consider the Hasse diagram of a poset (A, R) given below,

If $B=\{c, d, e\}$ find;
i) all upper bounds of B
iii) least upper bound of B
ii) all lower bounds of B
iv) greatest lower bound of B.

UNIT - V

9 a. Define simple graph. Prove that in any simple graph with n vertices, the number of edges is at $\operatorname{most} \frac{n(n-1)}{2}$.
b. Define isomorphism. Prove that the graphs shown below are isomorphic,

G_{1}

G_{2} frequencies $20,28,4,17,12,7$ respectively.

