P15MCA13 Page No... 1

U.S.N					

1

3

4

5

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

First Semester - Master of Computer Applications (MCA) Semester End Examination; Jan/Feb. - 2016 **Fundamentals of Computer Organization**

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

	UNIT - I				
1 a.	Perform the following number conversions:				
	(i) $(365)_8 = (?)_{16}$				
	(ii) $(3FD)_{16} = (?)_2$	8			
	(iii) $(526.72)_{10} = (?)_8$				
	(iv) $(11011011.100101)_2 = (?)_{16}$				
b.	b. Perform the subtraction using 2's complement method:				
	(i) $(11010)_2$ - $(10010)_2$ (ii) $(10101100)_2$ - $(10010011)_2$	4			
c.	Express the following function in a sum of min terms and product of max terms:				
	(i) $F(a, b, c, d) = ac' + bd$ (ii) $F(A, B, C) = (A' + B')(B' + C)$	8			
2 a.	Perform the BCD addition of 184+576 results should be in BCD.	4			
b.	Find the complement of the function F(A, B, C) = A+BC in canonical form and write the	_			
	truth table.	5			
c.	62-23 using 2's complement and 9's complement.	5			
d.	Explain Huntington's Postulates.	6			
	UNIT - II				
3 a.	Simplify using K-map method,				
	$F(A, B, C, D) = \Sigma(0, 3, 4, 5, 7) + d(8, 9, 10, 11, 12, 13, 14, 15)$				
b.	Design a full adder with truth table and logic circuit using only NAND gates.	8			
c.	What are universal gates? Why they are called so? Construct X-OR and X-NOR using only	_			
	OR gate.	6			
4 a.	Simplify the Boolean function $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10)$ in SOP and POS	0			
	construct the circuit for both the simplified function.	8			
b.	'NOR is Universal gate' support with the necessary diagrams and explanation.	6			
c.	What is multiplexer? Design 4-1 line multiplexer.	6			
	UNIT - III				
5 a.	Construct and explain the working of a 3 to 8 decoder.	10			

]	15MCA13	Page No 2			
ł	With a neat diagram explain how the instruction Add R_0 , R_1 is executed in the	e computer.	10		
5 a	What is Bus? Explain Single bus structure.		4		
ł	Explain different functional units of digital computer with neat diagram.		10		
C	Explain the working of 3-bit down Ripple counter.		6		
	UNIT - IV				
7 a	How interrupt requests from several I/O devices can be communicated to a	processor through	10		
	a single INTR line? Explain how multiple interrupts can be handled.		10		
b. W	Write a program that can evaluate the expression $Z = A*B + C*D$ using	a program that can evaluate the expression $Z = A*B + C*D$ using one address, two			
	address and three address instruction formats.		1(
8 a	What is bus arbitration? Explain two approaches to bus arbitration.		10		
ł	What is an addressing mode? Discuss any 4 addressing modes.		10		
	UNIT - V				
9 a. '	What is DRAM? With neat diagram explain internal organization of async	chronous 2M x 8	1.0		
	dynamic memory chip.		10		
b. Define vir	Define virtual memory. Explain the translation process of memory address	ldress from its virtual			
	address into physical address.	address.			
10	. What is ROM? Explain the different types of ROM's.		10		
	Define Cache memory Explain how mapping is performed in set associate n	nemories	1(