P15MCA13

Page No	1
---------	---

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

First Semester, Master of Computer Applications (MCA)

Make-up Examination; Feb - 2017 Fundamentals of Computer Organization

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

		UNIT - I	
1 a.	Convert the following indicated base	conversions :	
	i) $(111110001.111)_2 = (?)_{16}$	ii) $(2751.624)_8 = (?)_{10}$	10
	iii) $(5827.9)_{10} = (?)_{16}$	iv) $(305.C)_{16} = (?)_2$	12
	v) $(2374)_8 = (?)_{10}$	vi) $(110101111)_2 = (?)_8$.	
b.	List the steps to perform subtraction	on using r's complement. Apply for the given binary	
	numbers:		8
	M = 1010100, N = 1000011.		
2 a.	Explain Huntington's postulates.		8
b.	Simplify the following Boolean funct	ion to a minimum number of literals,	4
	$F = xy + \overline{x}z + yz.$		4
c.	Express the Boolean function in a,		0
	i) Sum of min terms $F = A + \overline{B}C$	ii) Product of max term $F = xy + \overline{x}z$.	8
		UNIT - II	
3 a.	Determine the minimal SOP and POS	for the following function,	10
	i) $f(W, X, Y, Z) = \sum (0, 1, 2, 5, 8, 9,$	10) ii) $f(A, B, C, D) = \sum (1, 3, 7, 11, 15) + d(0, 2, 5).$	10
b.	List the rule for obtaining the NAND	D logic diagram from a Boolean function. Implement the	
	following function with NAND gates	:	10
	$f(X,Y,Z) = \sum (0,6).$		
4 a.	Define Full-Subtractor. Explain Full-Subtractor.	Subtractor circuit using two Half-Subtractor.	10
b.	Design a BCD-to-Decimal decoder.		10
		UNIT - III	
5 a.	Explain clocked JK Flip-Flop.		10
b.	Discuss BCD Ripple counter with st	tate diagram, logic diagram, timing diagram and block	10
	diagram.		10
6 a.	With a neat diagram, explain the Basi	c operational concept of a computer.	10
b.	Define computer. Explain various typ	bes of computers.	6
c.	What is Bus? Explain single bus struc	cture.	4

P15MCA13	Page No 2

IINIT - IV

7 a.	a. Explain Indirect addressing mode and Indexed addressing mode with a programming example				
	each.	10			
b.	Explain the Basic Instruction types with an example.	10			
8 a.	How do Interrupts are enabled and disabled? Explain.	6			
b.	With a neat diagram, explain how the simultaneous interrupt requests are handled?	6			
c.	What is an exception? Discuss the types of exceptions.	8			
	UNIT - V				
9 a.	Explain ROM and its types.	10			
b.	Explain Direct mapping and Associative mapping technique of cache memory.	10			
10 a	Write a note on:				
	i) Static memories (SRAM)	10			
	ii) Dynamic memories (DRAM)				
b.	Explain the translation process of memory address from its virtual address into physical				
	address	10			

* * *