6	CHESTO	E 0003	190	9
	X	. 6	-	1
T .	150	olo	al	6
B	Ŧ	2220	222	a
Ja	ME	E	nn o/	12
11		25	3	100

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Second Semester - Master of Computer Applications (MCA) Make-up Examination; Jan/Feb - 2016 Data Structures using C

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1. a.	What is an abstract data type? Write the ADT for an array.	5				
b.	How two dimensional array is allocated in a row major order? Explain through an example.	10				
c.	Define a pointer. Explain the operators used in pointers, with example.	5				
2 a.	a. Define a String in C language. Write 'C' functions for joining two strings and to find the					
	length of string without using library functions.					
b.	Give the difference between: (i) call by value and call by reference					
	(ii) malloc () and calloc () (iii) Structure and union (iv)* $pi + 1$ and * $(pi + 1)$	10				
	UNIT - II					
3 a	Define a stack. Write 'C' program to implement PUSH and POP operations on a stack.	10				
	Write an algorithm to convent infix expression to postfix and trace it showing the contents of	10				
υ.		10				
	stack for the given expression $(A-(B+C))*D \land (E+F)$					
4 a.	Discuss stack as an ADT and list the application of stack.	4				
b.	What is recursion? What are the conditions necessary for development of recursive algorithm?	6				
c.	Write a recursive C program to search a given number using Binary search method.	10				
	UNIT - III					
5 a.	Define priority Queue? Explain the various types of priority queue.	4				
b.	Write a C program to perform insert, delete and display operation on an ordinary Queue.	10				
c.	Write a C routines to perform the following on a circular queue	6				
	(i) insertion (ii) deletion	U				
6 a.	a. What is doubly linked list? Write C function to implement stack's PUSH and pop operation					
	using singly linked list.	10				
b.	List the advantages to perform the following operation on circular queue:	4				
	(i) Insertion (ii) Deletion	7				
c.	Write a C function to count number of nodes in a linked list.	6				

UNIT - IV

7 a. Write a C program for binary search technique. Explain with example.
b. Define binary tree. Write the inorder, preorder and postorder traversal for the given binary

(A) (B) (C) (D)

10

10

8 a. Define binary search tree. Write and explain the C module to insert an element into BST, if it does not exist on it already.

b. Write about the following:

UNIT - V

9 a. Explain shell sort. Trace the shell sort for the following data: 25 27 57 48 37 12 92 86 10

b. Write a C program for Quick sort.

10 a. Sort the following number using heap sort procedure.

i) AVL Trees ii) Threaded Binary Tree. (iii) Hashing

21 42 49 52 5 7 81 86

tree.

b. Write a C program for Bubble sort.

* * *