P14MCA23	Page No 1
U.S.	S.N
P.E.S. College of Enginee	ering, Mandya - 571 401
(An Autonomous Institution ag	
Second Semester - Master of Co Make-up Examination	
Operating	-
Time: 3 hrs	Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full	l question from each unit .
UNIT - I	I
1. a. What is Operating System? Discuss the different view	ews of Operating System.
b. What is Multiprocessor System? What are the advan	intages of it?
c. Explain the Java virtual machine.	
2 a. Explain the importance and functions of Process	Management, Memory Management and
Storage Management.	
b. What is system programming? Explain the different	t categories of system programme.
UNIT - I	II.
3 a. What is PCB? Explain the contents of PCB.	
b. Discuss the different ways of implementing buffer s	space in interprocess communication.
c. Explain the different CPU scheduling algorithm.	
4 a. Discuss the different CPU scheduling criteria.	
b. What are the benefits of multithreaded programmin	ıg?
c. Consider the following set of processor, with t	the length of CPU Burst time given in
milliseconds, all the process are assumed to be arriv	ved at time.

Process	Burst time	Priority
P ₁	10	3
P ₂	1	1
P ₃	2	3
P ₄	1	4
P ₅	5	2

10

i) Draw the Gantt Chart for FCFS, SJF, Priority (small no. is higher priority) and Round Robin (Quantum = 1)

ii) Find average waiting time and average turn around time for each above type of scheduling.

P14MCA23

10

UNIT - III

5 a.	a. What is the critical section problem? What are the requirements that should be satisfied for			5		
	the solution to it?			5		
b.	b. What is a monitor? Explain its usage.		5			
c.	c. Explain the Bankers algorithm for dead lock avoidance.		10			
ба.	5 a. What is a semaphore? Explain the operations on it?		5			
b.	b. What are the necessary conditions for dead lock to occur.		5			
c. Consider the following snapshot of a system :						
		Allocation	Max	Available		

	Allocation	Max	Available
	ABC	A B C	A B C
\mathbf{P}_1	010	753	332
P ₂	200	322	
P ₃	302	902	
P_4	211	222	
P ₅	0 0 2	433	

i) What is the content of need matrix?

ii) Is the system is in a safe state?

UNIT - IV

7 a.	Explain the different types of binding of Instructions and data to memory?	4
b.	What is segmentation? Explain the segmentation hardware.	8
c.	What is page fault? Explain the steps in handling page fault.	8
8 a.	What is memory fragmentation? Explain different types of memory fragmentations.	8
b.	Consider the following reference string.	
	7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 for the given string how many page fault	10
	occurs in FIFO, optional page replacement and LRU page replacement algorithms assuming	12
	frame size is 3.	

UNIT - V

9 a.	Explain different logical structure of directory.	10
b.	Explain different disk space allocation methods.	10
10 a.	Explain the different methods of free - space management in disks.	10
b.	Explain the different disk scheduling algorithms.	10

* * *