P14MCA25

 $z_{\text{max}} = x_1 + x_2$ Subject to $x_1 + 5x_2 \le 5$, $2x_1 + x_2 \le 4$ where $x_1, x_2 \ge 0$

b. Solve the following LPP using Two – Phase method.

Maximize

$$z_{\max} = 4x_1 + 5x_2 + 2x_3$$
Subject to $2x_1 + x_2 + x_3 \le 10$, $x_1 + 3x_2 + x_3 \le 12$
 $x_1 + x_2 + x_3 \le 6$
where $x_1, x_2, x_3 \ge 0$
10

UNIT - III

5 a. Solve the following LPP using Dual simplex method.

Maximize

$$z_{\max} = -3x_1 - 2x_2$$
Subject to $x_1 + x_2 \ge 1$, $x_1 + x_2 \le 7$
 $x_1 + 2x_2 \ge 10$, $x_1 \le 3$
where $x_1, x_2 \ge 0$
10

- b. Write the steps involved in Revised simplex method.
- 6. a. Write the Dual of the given LPP.

Maximize

$z_{Max} = 4x_1 + 5x_2 + 12x_3$	6
Subject to $2x_1 + x_2 + x_3 \le 4$, $3x_1 - 2x_2 + x_3 \le 3$	
$4x_1 + 3x_2 \le 10$ where $x_1, x_2, x_3 \ge 0$	

- b. Write the relationship between the primal and Dual LPP.
- c. What is Sensitivity analysis and state its advantages.

UNIT - IV

- 7 a. What is degeneracy in Transportation problem and explain how to resolve it with example.
 - b. Consider the following transportation table having unit transportation cost from factor y to destination.

				Dest	tinatio	on
		D_1	D_2	D ₃	D_4	Supply units
	F_1	6	1	9	3	70
	F_2	11	5	2	8	55
Factory	F ₃	10	12	4	7	90
	Required Units	85	35	50	45	

15

10

6

8

5

Page No... 3

P14MCA25

Having following allocations, $X_{1,3} = 50$, $X_{1,4} = 20$, $X_{2,1} = 55$, $X_{3,1} = 30$, $X_{3,2} = 35$, $X_{3,4} = 25$ Check is that the given allocation is optimal solution of the transportation problem. If not modify it to obtain the optimal solution using uv – method.

(Note : Assume X_{ij} cell means i^{th} row and j^{th} column cell.)

8 a. There are 5 jobs to be assigned to one each to 5 mens and the associated cost matrix is as follows.

				Jobs		
		\mathbf{J}_1	J_2	J_3	\mathbf{J}_4	J_5
	\mathbf{M}_1	2	8	Х	5	6
	M_2	0	1	8	2	6
Men	M_3	5	6	1	4	Х
	M_4	7	4	8	2	3
	M_5	5	4	0	6	7

Use Hungarian method of job assignment and determine the optimal assignment cost. [Note: 'X' mark in the matrix indicates that corresponding assignments are restricted].

b. Solve the following transportation problem suing VAM method. Unit transportation cost from plants to distribution centres, supply and demand are given in the following transportation table.

			Dis	tribution	centres	
		D_1	D_2	D ₃	D_4	Supply
	P_1	2	3	11	7	6
Plants	P_2	1	0	6	1	1
	P ₃	5	8	15	9	10
	Demand	7	5	3	2	

UNIT - V

9 a. Explain the following: i) Pure strategy

iv) Two person zero – sum game.

ii) Optimal strategy

b. Solve the following game using Dominance rule.

iii) Pay – off – matrix

		I	layer	В	
		Ι	II	III	IV
	Ι	6	8	3	13
Player A	II	4	1	5	3
	III	8	10	4	12
	IV	3	6	7	12

ы

D

10

10

8

8

P14MCA25

c. Find out the saddle point in the following game,

]	Player	В	
		B_1	B_2	B ₃	B_4
	A_1	20	15	12	35
Player A	A_2	25	14	8	10
	A_3	40	2	10	5
	A_4	-5	4	11	0

10 a Solve the following game using graphical method.

	1	Player E	3
		\mathbf{B}_1	B ₂
	A ₁	1	-3
Player A	A_2	3	5
	A ₃	-1	6
	A_4	4	1
	A ₅	2	2
	A ₆	-5	0

b. Write a short note on:

i) Simulated Annealing

ii) Tabu search.

10

10

* * * * *

4