P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belgaum)
 Third Semester - Master of Computer Applications (MCA) Semester End Examination; Dec. - 2015
 Analysis and Design of Algorithms

Time: 3 hrs
Note: Answer FIVE full questions, selecting ONE full question from each unit.
UNIT - I
1 a . Give the general plan for analyzing time efficiency of recursive algorithms with an example.
b. Write the formal definitions of Asymptotic Notations.
c. Arrange the following functions according to their order of decay,
$\log _{2} \mathrm{n}, \mathrm{n}, \mathrm{n} \log _{2} \mathrm{n}, \mathrm{n}^{2}, \mathrm{n}^{3}, 2^{\mathrm{n}}, \mathrm{n}!$.
2 a . Write an algorithm to find largest of N numbers and obtain the time efficiency.
b. Write an algorithm for Brute force string matching and also analyze its time complexity.

UNIT - II
3 a. Explain Defective chess Board problem with $\mathrm{K}=2$.
b. Write the merge sort algorithm and find the time complexity.

4 a. Define fractional knapsack problem. Obtain the optimal solution for the knapsack problem using greedy method given the following :
$\mathrm{m}=40$ (capacity of the knapsack)
$\mathrm{n}=3$ (number of elements)
$\left(\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}\right)=(20,25,10)$ (represents weights) $\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\right)=(30,40,35)$ (represents profits).
b. Define minimum spanning tree. Solve the following graph for its MST using Kruskal's algorithm.

UNIT - III
5 a. Explain the concept of decrease and conquer methodology, indicating the three major variations of the same.
b. Write an algorithm for sorting by counting. Trace the algorithm over the list :

$$
6,3,8,9,1,4,5 .
$$

6 a. What is topological sorting? Topologically sort the following graph using source removal method.
 algorithm over the list: $25 \quad 45 \quad 10 \quad 20 \quad 50 \quad 15$.

UNIT - IV

7 a. Write an algorithm to compute transitive closure using Warshall's method. Apply the same for the graph given.

b. With the help of an algorithm, explain the Floyd's algorithm for all-pairs shortest path problem. Apply it to the following graph.

8 a. Write a note on:
i) P-class
ii) NP - class
iii) NP - complete problems
iv) NP - hard problems
b. Write a decision tree to sort the elements using selection sort and show that the lower bound is $\log _{2} n$! Also show that the asymptotic behaviour is $n \cdot \log _{2} n$.

UNIT - V

9 a . Apply the branch and bound algorithm to solve the TSP for the following graph.

b. Apply backtracking to solve the following instance of sum of subset problem. $S=\{1,5,2$, $7\}$ with $\mathrm{d}=8$.
10 a. Let the input to the prefix computation problem is $\{12,3,6,8,11,4,5,7\}$ and let \oplus be addition. Obtain prefix's using divide and conquer with $\mathrm{n}=8$ and $\mathrm{p}=8$.
b. Define the terms :
i) Speedup
ii) Asymptotic speedup
iii) Linear speedup
iv) Total work done by algorithm
v) Efficiency of the algorithm.

