P11	MCA33 Page No 1			
	U.S.N U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester - Master of Computer Applications (MCA)			
	Semester End Examination; Dec 2015			
Ti	me: 3 hrs Max. Marks: 100			
Note: Answer FIVE full questions, selecting ONE full question from each unit.				
UNIT - I				
1 a.	Give the general plan for analyzing time efficiency of recursive algorithms with an example.	10		
b.	Write the formal definitions of Asymptotic Notations.	6		
c.	Arrange the following functions according to their order of decay,	4		
	$\log_2 n, n, n \log_2 n, n^2, n^3, 2^n, n!.$	4		
2 a.	Write an algorithm to find largest of N numbers and obtain the time efficiency.			
b.	Write an algorithm for Brute force string matching and also analyze its time complexity.	10		
UNIT - II				
3 a.	Explain Defective chess Board problem with $K = 2$.	8		
b.	Write the merge sort algorithm and find the time complexity.	12		
4 a.	Define fractional knapsack problem. Obtain the optimal solution for the knapsack problem			
	using greedy method given the following :			
	m = 40 (capacity of the knapsack)	10		
	n = 3(number of elements)	10		
	$(W_1, W_2, W_3) = (20, 25, 10)$ (represents weights)			
	$(P_1, P_2, P_3) = (30, 40, 35)$ (represents profits).			

b. Define minimum spanning tree. Solve the following graph for its MST using Kruskal's algorithm.

UNIT - III

5 a. Explain the concept of decrease and conquer methodology, indicating the three major variations of the same.

12

10

Contd...3

P11MCA33

- b. Write an algorithm for sorting by counting. Trace the algorithm over the list :
 6, 3, 8, 9, 1, 4, 5.
- 6 a. What is topological sorting? Topologically sort the following graph using source removal method.

UNIT - IV

7 a. Write an algorithm to compute transitive closure using Warshall's method. Apply the same for the graph given.

b. With the help of an algorithm, explain the Floyd's algorithm for all-pairs shortest path problem. Apply it to the following graph.

i) P - class	ii) NP - class	10
iii) NP - complete problems	iv) NP - hard problems	

b. Write a decision tree to sort the elements using selection sort and show that the lower bound is log 2 n! Also show that the asymptotic behaviour is n.log2 n.
10

10

Page No... 2

10

10

P11MCA33

UNIT - V

9 a. Apply the branch and bound algorithm to solve the TSP for the following graph.

- b. Apply backtracking to solve the following instance of sum of subset problem. $S = \{1, 5, 2, 10 \}$ with d = 8.
- 10 a. Let the input to the prefix computation problem is $\{12, 3, 6, 8, 11, 4, 5, 7\}$ and let \oplus be addition. Obtain prefix's using divide and conquer with n = 8 and p = 8.
 - b. Define the terms :

i) Speedup

- ii) Asymptotic speedup
- iii) Linear speedup
- iv) Total work done by algorithm
- v) Efficiency of the algorithm.

* * * *

10