P13EE15/25 Page No... 1

U.S.N

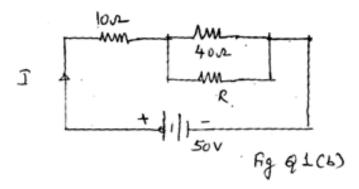
P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Second Semester - B.E. - Semester End Examination; June – 2016 **Basic Electrical Engineering**

(Common to All Branches)

Time: 3 hrs Max. Marks: 100


Note: i) Answer *FIVE* full questions, selecting *ONE* full question from each unit. ii) Missing data may suitably assume.

UNIT - I

- 1 a. Explain the following terms with necessary derivations:
 - (i) Statistically induced emf

8

- (ii) Mutually induced emf
- b. In the circuit shown in Fig. Q.1(b) power dissipated in 10 Ω resistor is 40 W. Determine the value of R.

8

c. A coil of 150 turns is linked with a flux of 0.01wb when carrying a current of 10 A, Calculate the inductance of the coil. If this current is uniformly reversed in 0.01 second, Calculate the induced emf.

4

2 a. Derive an expression for the energy stored in a magnetic field.

6

b. Two resistors are connected in parallel across 100 V DC supply current drawn by the circuit is 10 A and the power dissipated in one resistor is 600 W. What is the current drawn by the resistors when they are connected in series across the same supply?

8

- The self inductance of a coil having 500 turns is 0.25 H. If 60% of the flux is linked with a second coil of 10,000 turns calculate;
- 6

(i) Mutual inductance of the two coils,

(ii) E.M.F. induced in the second coil when current in the first coil changes at the rate of 100 A/sec.

UNIT - II

3 a.	Distinguish between lagging power factor and leading power factor in a.c. circuits. Show that current in a R-C circuit leads the voltage by an angle ph. Draw necessary circuit diagram, vector diagram and waveforms.	8
b.	A voltage of 100 V at 50 Hz is applied to a R-L series circuit. The current in the circuit is 5 A lagging behind the voltage by 35°. Write the expression for the current and voltage. Find the values of R and L.	8
c.	An alternating emf is mathematically expressed as $e = 200 \sin 314t$. Find;	
	(i) The amplitude (ii) Frequency (iii) The instantaneous value, when $t = \frac{1}{200} \sec x$.	4
4 a.	Define Average value and RMS value of a sinusoidal alternating current. Derive an expression for RMS value of a sinusoidal waveform.	6
b.	What is meant by phase angle between two alternating of quantities? Show that the average power in an ac circuit is given by $P = VI \cos \phi$.	6
c.	A voltage $v = 100Sin314t$ is applied to a circuit consisting of a 25 Ω resistor and an	
	80 microfarad capacitor in series. Determine;	o
	(i) An expression for the value of current	8
	(ii) The power consumed by the circuit.	
	UNIT - III	
5 a.	Establish the relation between phase and line values of voltages and currents in 3 phase star	6
	connected circuit. Draw the phasor diagram.	O
b.	Three equal impedances each having a resistance of 8 Ω and inductance reactance of 6 Ω are	
	connected in star across a 3 phase 440 V system. Find;	
	(i) Phase current	6
	(ii) Line current	
	(iii) Total power consumed.	
c.	With the help of a neat diagram, describe the constructional features and working of a	8
	Dynamometer wattmeter.	
6 a.	Mention the advantages of 3 phase system over single phase system.	6
b.	A balanced star connected load is supplied from a balanced 3 phase 400 V, 50 Hz system.	
	The current in each phase is 30 A and lags 30° behind the phase voltage. Draw the phasor	6
	diagram.	
c.	What do you mean by earthing? Explain why installations must be earthed. With a neat diagram explain plate earthing.	8

UNIT - IV

7 a.	With usual notations derive an expression for the induced EMF of a DC machine.	6
b.	4 pole 250 V series motor has a wave connected armature with 1254 conductors. The flux per	
	pole is 22 mwb when the motor is taking 50 A. Armature resistance is 0.2 Ω . Calculate the	4
	speed.	
c.	With neat diagrams explain different types of rotors used in synchronous generators where	10
	are the two types used.	10
8 a.	List different types of DC motors. Write the circuit representation of each type and explain.	8
b.	A 250 V shunt motor takes a total current of 20 A. Resistance of the shunt field is 200 Ω and	4
	of the armature $0.3\ \Omega$. Find the current in the armature and back emf.	4
c.	Starting from basic principles, develop an expression for the emf induced in an alternator.	8
	UNIT - V	
9 a.	Explain with a neat sketch construction of a shell type transformer.	4
b.	Explain the principle of operation of a transformer.	4
c.	In a 25 kVA 2000/200 V transformer, the iron and Copper losses are 350 W and 400 W	6
	respectively. Calculate the efficiency at UPF at half full load.	
d.	Briefly explain the construction and principle of operation of a 3 phase squirrel cage	6
	induction motor.	
10 a	Explain briefly various losses that occur in a transformer.	4
b.	Derive the EMF equation of a transformer from fundamentals.	6
c.	Explain the principle of operation of Induction motor. Why does it require a starter? Can it be	6
	run at synchronous speed? Why?	U
d.	If the electromotive force in the stator of an 8 pole Induction motor has a frequency of 50 Hz	4
	and that in the rotor 1.5 Hz, at what speed is the motor running and what is the slip?	7