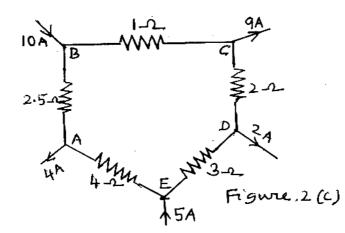

Time: 3 hrs

Max. Marks: 100

Note: Answer *FIVE* full Questions, selecting *ONE* full question from each *unit*. UNIT - I


- 1 a. State and explain Kirchoff's laws applied to D.C. circuits.
 - b. In the network shown in Fig. 1(b) the current is the 12 Ω resistor is 2.5. A Determine the battery voltage E and the power dissipated in 6 Ω resistors.

- c. Define coefficient of coupling and derive the expression for energy stored in an inductor.
- 2 a. State and explain:

(i) Fleming's left hand rule (ii) Fleming's right hand rule

- b. The coefficient of coupling between two coils is 0.75, when a current of 3 A flows in the first coil having 250 turns, the total flux produced in this coil is 4 mwb. When this current is linearly changed from 3 A to zero in 3 milli seconds, the voltage induced in the second coil is 70 V. Determine L₁, L₂, M and N₂.
- c. For the network shown in Fig. 2(c) find the currents in all branches.

6

6

8

6

6

8

UNIT - II

- 3 a. Define Average value, RMS value and form factor in an alternating circuit.
 - b. A current of 0.9 A flows through a series combination of resistor 120 Ω and a capacitor of reactance 250 Ω . Find the impedance, power factor, supply voltage, voltage across resistor, 8 voltage across capacitor, apparent power, active power and reactive power.
 - c. Prove that the current in a purely inductive circuit lags behind the applied voltage by 90°.
- 4 a. Starting from fundamentals, show that the power consumed in a single phase A.C. circuit is given by VI cos .
 - b. Two circuits A and B are connected in parallel across 200 V, 50 Hz supply. Circuit A consists of 10 Ω resistance and 0.12 H inductance in series while circuit B consists of 20 Ω resistances and 40 µF capacitance. Calculate;
 - (i) The current in each branch
 - (ii) The supply current
 - (iii) Total power factor. Draw the phasor diagram.
 - c. An impedance coil is parallel with a 100 μ F capacitor is connected across a 200 V, 50 Hz supply. The coil takes a current of 4 A and the power in the coil is 600 watts. Calculate; (i) The resistance of the coil
 - (ii) The inductance of the coil
 - (iii) the power factor of the entire circuit.

UNIT - III

	UNIT - IV	
c.	With a neat connection diagram and switching table explain the 3 way control of a lamp.	6
	factor and current in the circuit.	
	watt meters connected indicate $W_1=5\ kW$ and $W_2=1.2\ kW.$ Calculate the power, power	8
b.	A balanced 3 phased star connected load draws power from a 440 V supply. The two	
6 a.	Explain pipe earthing with a neat diagram.	6
	per phase.	
	connected across a balanced three phase 1.1kV, 50 Hz supply. Find the load circuit parameters	6
c.	A balanced 3 phase, star connected 210 kW load takes a leading current of 160 A when	
	wattmeter.	0
b.	With a neat diagram, explain the construction and working principle of dynamometer type	8
	balanced 3 phase DELTA connected system.	0
5 a.	Obtain the relationship between the phase and the line values of voltages and currents in a	6

7 a. With a neat sketch, explain the constructional features of a D.C. machine. Mention the 10 functions of each part.

6

6

6

8

P15EE15

Page No... 3

b.	An eight pole, dc shunt generator has 778 wave connected conductors on its armature. While	6
	running at 800 rpm, it supplies power to a load of 12.5 Ω at 250 V. The armature and shunt	
	field resistances are 0.24 Ω and 250 Ω respectively. Determine the armature current, the emf	
	induced and the Flux per pole.	
c.	Enumerate any four advantages of having stationary armature and rotating field system in	4
	large size alternators.	
8 a.	With usual notations, derive the emf equation of a synchronous generator.	6
b.	A 6 pole, dc shunt motor has a Lap connected armature with 492 conductors. The resistance	
	of the armature is 0.2 Ω and the flux per pole is 50 mwb. The motor runs at 20 revolutions per	0
	second when it is connected to a 500 V supply for a particular load. What will be the speed of	8
	the motor when the load is reduced by 50%? Neglect contact drop and magnetic saturation.	
c.	A 2 pole, 3 phase alternator running at 3000 rpm has 42 slots with 2 conduction per slot. The	6
	flux per pole required to generate Line voltage of 2300 V. Assume $K_d = 0.952$ and $K_p = 0.956$.	6
	UNIT - V	
9 a.	Explain the various losses that occur in a transformer. How are they minimized?	6
b.	The efficiency at full load and unity power factor of a single phase 25 kVA, 500 V/1000 V,	
	50 Hz transformer is 98%. Determine its efficiency at	8
	(i) 75% load, 0.9 p.f. (ii) 50% load, 0.8 p.f.	
c.	Explain the principle of operation of a 3 phase induction motor and give reason for "An	6
	induction motor can not run at synchronous speed".	0
10 a.	The primary of a transformer is connected to a 240 V, 50 Hz supply. The secondary winding	
	has 1500 turns. If the maximum value of the core flux is 0.00207 wb determine;	
	(i) The secondary induced emf	6
	(ii) The number of turns in the primary	0
	(iii) The cross sectional area of the core, if the flux density has maximum value of 0.465	
	wb/m ² .	
b.	A 12 pole, 3 phase alternator is coupled to an engine running at 500 rpm. It supplies an	
	induction motor which has full load speed of 1440 r.p.m. Find the percentage slip and the	6
	number of poles of the motor.	
c.	Explain why an induction motor needs a starter.	4
d.	What are the applications of 3 phase induction motors?	4

* * * *