P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
First Semester, B.E. - Make-up Examination; Jan / Feb - 2017
Basic Electrical Engineering
(Common to all Branches)
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting $\boldsymbol{O N E}$ full question from each unit.
UNIT - I
1 a . State and explain Ohm's law. Mention the limitations of it.
b. If the total power dissipated in the circuit shown in Fig. Q1b is 18 watts. Find the value of ' R ' and the current through it.

2 a. Define the terms :
i) self inductance
ii) Mutual inductance
iii) coefficient of coupling
iv) Lenz's law.
b. Determine the magnitude and direction of the current in the 2 V battery in the circuit of Fig. Q2b.
 inductance of coil A and mutual inductance between A and B.

UNIT - II
3 a . Derive an expression for RMS value of a sinusoidally varying alternating quantity.
b. An alternating current ' i ' is given by, $i=141.4 \times \sin 314 t$. Find;
i) The maximum value
ii) Time period
iii) Instantaneous value when t is 3 msec .
c. A circuit consisting of branches A and B are connected in parallel, is connected a/s 220 V , 50 Hz , supply. Branch A containing a resistance of 7Ω in series with 0.0125 H inductance and branch B contains a resistance of 852 in series with $1000 \mu \mathrm{~F}$ capacitor. Find the branch current and total current. Draw the phasor diagram.
4 a . Derive the expressions for current, power and power factor in an RL circuit.
b. A current, $i=\sin \left(31 \mathrm{t}-10^{\circ}\right)$ produces a potential drop, $v=220 \sin \left(31 \mathrm{t}+20^{\circ}\right)$ in a circuit. Find the values of circuit parameters, assuming a series combination.
c. A series circuit with $\mathrm{R}=10 \Omega, \mathrm{~L}=50 \mathrm{mH}$ and $\mathrm{C}=100 \mu \mathrm{~F}$ is supplied with $200 \mathrm{~V}, 50 \mathrm{~Hz}$. Find;
i) Impedance
ii) Current
iii) Power
iv) Power factor. Draw the phasor diagram.

UNIT - III

5 a. Obtain the relation between line and phase values of voltage and current in balanced star connected network.
b. A balanced delta connected load of $(8+\mathrm{j} 6) \Omega$ per phase is supplied from a $3-\phi, 440 \mathrm{~V}$ source. Find the line current, power factor, power/phase and total power.
c. A balanced $3-\phi$, y-connected load draws power from a 440 V supply. The two watt meters connected indicate $\mathrm{w}_{1}=4.2 \mathrm{~kW}$ and $\mathrm{w}_{2}=0.8 \mathrm{~kW}$. Calculate the power, power factor and current in the circuit.

6 a. What is electric shock? What are the causes and precautions to be taken to prevent it? 6
b. What is earthing? With a neat sketch, explain plate earthing. 6
c. With a neat sketch, explain the construction and working of single phase energy meter. 8

UNIT - IV

7 a. Explain the principle of operation of a DC machine as :
i) A generator
ii) A motor.
b. A 110 DC shunt generator delivers a load current of 50 A . The armature resistance is 0.2Ω and the field circuit resistance is 55Ω. The generator rotating at a speed of 1800 rpm has 6 poles, lap wound and has a total of 360 conductors. Calculate;
i) The no load voltage in the armature
ii) The flux/pole.
c. What are the various types of DC motors? Give their circuit representation and related equations.

8 a. With suitable notations, derive the EMF equation of synchronous generator.
b. With relevant sketches, distinguish between salient pole and non salient pole type synchronous generators and when these are preferred?
c. A 12 pole, 500 rpm , star connected alternator has 60 slots with 20 conductors per slot. The flux per pole is 0.02 wbs and is distributed sinusoidally. The winding factor is 0.97 . Calculate;
i) Frequency
ii) Phase emf
iii) Line emf. Assume the coil is full pitched.

UNIT - V

9 a. With the help of a neat sketch, explain the constructional features of single phase transformer.
b. With suitable background, obtain the expression for efficiency of single phase transformer.
c. In a $25 \mathrm{kVA}, 2000 / 200$ volts, 1- ϕ transformer, the iron and full load copper losses are 350 and 400 watts, respectively. Calculate the efficiency at unity power factor on :
i) Full load
ii) Half full load.

10 a. Enumerate the advantages and disadvantages of three phase induction motors.
b. What is slip in an induction motor? Explain why slip is never zero in an induction motor? 6
c. If the frequency of EMF in the stator of an 8 pole induction motor is 50 Hz and that in the rotor is 1.5 Hz . What is the value of slip and at what speed is the motor running?

