Time: 3 hrs

Max. Marks: 100

6

6

8

8

6

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- 1 a. State and explain Ohm's law. Mention the limitations of it.
- b. If the total power dissipated in the circuit shown in Fig. Q1b is 18 watts. Find the value of 'R' and the current through it.

- c. What are the types of induced emfs? Explain them in brief.
- 2 a. Define the terms :
 - i) self inductance ii) Mutual inductance
 - iii) coefficient of coupling iv) Lenz's law.
- b. Determine the magnitude and direction of the current in the 2 V battery in the circuit of Fig. Q2b.

c. Two coils A and B having 4000 and 3000 turns respectively. When a current of 0.5 A flows in coil A produces a flux of 100 µwbs in it and 60% of the this flux links coil B. Find self
6 inductance of coil A and mutual inductance between A and B.

UNIT - II

- 3 a. Derive an expression for RMS value of a sinusoidally varying alternating quantity.
 - b. An alternating current '*i*' is given by, $i = 141.4 \times sin314t$. Find;
 - i) The maximum value
 - ii) Time period
 - iii) Instantaneous value when t is 3 msec.

6

6

P15EE15/25

Page No... 2

c.	A circuit consisting of branches A and B are connected in parallel, is connected a/s 220 V,	
	50 Hz, supply. Branch A containing a resistance of 7 Ω in series with 0.0125 H inductance	8
	and branch B contains a resistance of 852 in series with 1000 μ F capacitor. Find the branch	8
	current and total current. Draw the phasor diagram.	
4 a.	Derive the expressions for current, power and power factor in an RL circuit.	8
b.	A current, $i = \sin (31t - 10^\circ)$ produces a potential drop, $v = 220 \sin (31t + 20^\circ)$ in a circuit.	6
	Find the values of circuit parameters, assuming a series combination.	0
c.	A series circuit with R = 10 Ω , L = 50 mH and C = 100 μ F is supplied with 200 V, 50 Hz.	
	Find;	6
	i) Impedance ii) Current iii) Power iv) Power factor. Draw the phasor diagram.	
	UNIT - III	
5 a.	Obtain the relation between line and phase values of voltage and current in balanced star	8
	connected network.	0
b.	A balanced delta connected load of (8+j6) Ω per phase is supplied from a 3- ϕ , 440 V source.	6
	Find the line current, power factor, power/phase and total power.	
c.	A balanced 3-\$, y-connected load draws power from a 440 V supply. The two watt meters	
	connected indicate $w_1 = 4.2 \text{ kW}$ and $w_2 = 0.8 \text{ kW}$. Calculate the power, power factor and	6
	current in the circuit.	
6 a.	What is electric shock? What are the causes and precautions to be taken to prevent it?	6
b.	What is earthing? With a neat sketch, explain plate earthing.	6
c.	With a neat sketch, explain the construction and working of single phase energy meter.	8
	UNIT - IV	
7 a.	Explain the principle of operation of a DC machine as :	6
_	i) A generator ii) A motor.	
b.	A 110 DC shunt generator delivers a load current of 50 A. The armature resistance is 0.2 Ω	
	and the field circuit resistance is 55 Ω . The generator rotating at a speed of 1800 rpm has	
	6 poles, lap wound and has a total of 360 conductors. Calculate;	6
	i) The no load voltage in the armature	
	ii) The flux/pole.	
c.	What are the various types of DC motors? Give their circuit representation and related	8
	equations.	
8 a.	With suitable notations, derive the EMF equation of synchronous generator.	6
b.	With relevant sketches, distinguish between salient pole and non salient pole type	8
	synchronous generators and when these are preferred?	

- c. A 12 pole, 500 rpm, star connected alternator has 60 slots with 20 conductors per slot. The flux per pole is 0.02 wbs and is distributed sinusoidally. The winding factor is 0.97. Calculate;
 - i) Frequency
 - ii) Phase emf
 - iii) Line emf. Assume the coil is full pitched.

UNIT - V

9 a.	With the help of a neat sketch, explain the constructional features of single phase	8
	transformer.	0
b.	With suitable background, obtain the expression for efficiency of single phase transformer.	6
c.	In a 25 kVA, 2000/200 volts, 1- ϕ transformer, the iron and full load copper losses are 350	
	and 400 watts, respectively. Calculate the efficiency at unity power factor on :	6
	i) Full load	0
	ii) Half full load.	
10 a.	Enumerate the advantages and disadvantages of three phase induction motors.	8
b.	What is slip in an induction motor? Explain why slip is never zero in an induction motor?	6
c.	If the frequency of EMF in the stator of an 8 pole induction motor is 50 Hz and that in the	6
	rotor is 1.5 Hz. What is the value of slip and at what speed is the motor running?	0

* * *

6