

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Second Semester, B.E. - Make-up Examination; July -2016

Basic Electrical Engineering (Common to all Branches)

Time: 3 hrs

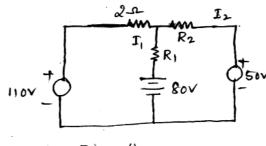
Max. Marks: 100

6

6

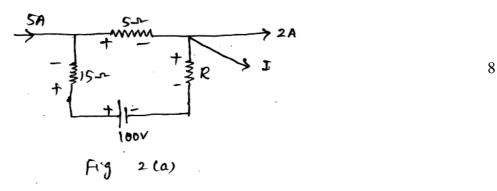
8

6


6

6

Note: i) Answer *FIVE* full questions, selecting *ONE* full question from each unit. *ii*) Missing data may suitably assume.


UNIT - I

- 1 a. State and explain Kirchhoff's Laws.
 - b. What are the values of R_1 and R_2 must have for Fig. 1(b) under the following conditions,
 - (i) When $I_1 = 4$ A and $I_2 = 6$ A both are charging
 - (ii) When $I_1 = 2$ A discharging and $I_2 = 20$ A charging.

- c. Define coefficient of coupling and derive an expression for the same.
- 2 a. A portion of the network is shown in Fig. 2(a) with the polarities as indicated. The voltage across 15 Ω resistors is 30 V. Find the value of resistance R and the current I.

- b. State and explain Faraday's law of electromagnetic induction.
- c. A current of 1 A is passed through a coil of 6000 turns produced a flux of 0.1 mwb. What is the inductance of the coil? What would be the voltage developed across the coil, if the coil is 6 interrupted in 10⁻³ sec.? What is the energy stored in the coil?

UNIT - II

- 3 a. Define RMS, average, form factor and peak factor of an alternating current.
 - b. With usual notations, prove that the power consumed in series RL circuit is VI cos .

P15EE15/25

Page No... 2

6

6

- c. Two parallel impedances Z₁ = (10+j15) Ω and Z₂ = (6-j8) Ω is connected in series with third impedances Z₃ = (5+j2) Ω. Determine the branch current and power consumed in each 8 branch when the circuit takes a current of 15 A.
- 4 a. With necessary equations and waveforms explain phase and phase difference.
 - b. Show that why the average power demand never becomes zero in case pure resistive element starting from basic fundamentals.
 - c. In a series RLC circuit, R Ω , L = 0.2 H and a capacitance of C farads are connected in series. When alternating voltage is applied to the series combination. The current flowing in this circuit is $i = 10\sqrt{2}Sin(314t - 65^\circ)$. Find the values of R and C.

Given; $v = 400\sqrt{2}Sin(314t - 20^\circ)$.

the current has fallen to 50 A.

UNIT - III

5	a.	Mention the advantages of 3 phase ac system over single phase.	6
	b.	With the help of phasor diagram, derive an expression for line voltage and the current for the	6
		star connected balanced load.	5
	c.	With the help of a neat circuit diagram, explain the constructional details of Induction type	8
		energy meter.	
6	a.	With the help of phasor diagram and circuit show that two watt meters are sufficient to	8
		measure 3 phase power.	C
	b.	A balanced delta connected load of (8+j6) Ω per phase is supplied from a 3-phase 440 V	6
		source. Determine the line current, power factor and the total power.	
	c.	With the help of neat diagram and switching table explain two way and three way control of	6
		lamps.	0
		UNIT - IV	
7	a.	With usual notations derive an expression for DC generator.	6
	b.	Define torque and derive the equation for the same.	6
	c.	A 3-phase, 16 pole, star connected alternator has 192 slots, with 8 conductor/slot and the	
		conductors of each phase are connected in series. The coil span is 150 electrical degrees.	8
		Determine the line and phase emfs, if the machine runs at 375 rpm and flux/pole is	
		6.4×10^{-2} wbs. Given that $K_d = 0.96$.	
8	a.	What do you mean by back EMF? What is its significance?	8
	b.	Explain the various types of synchronous generator with neat diagrams.	8
	c.	A series motor runs at 600 rpm while taking a current of 110 A from a 230 V supply. The	
		resistances of the armature and field are 0.12 Ω and 0.03 Ω respectively. The useful	6
		flux/pole for 110 A is 0.024 wbs and that for 50 A is 0.0155 wbs. Calculate the speed when	

P15EE15/25

6

8

6

8

6

UNIT - V

- 9 a. With usual notations, Derive an EM.F. Equation of a transformer.
 - b. With neat diagram, explain the constructional details of various types of Induction motors.
 - c. In a 25 kVA transformer, the iron losses are 350 W to 400 W respectively. Calculate the efficiency at $\frac{1}{4}$ th full load at UPF and at $\frac{3}{4}$ th of full load at 0.8 p.f.
- 10 a. Mention the different losses in a transformer and how are they minimized?
 - b. With relevant diagram, explain how does the rotating magnetic field is developed in Induction-motors.
 - c. A 250 kVA, 11000/415 V, 50 HZ, 1¢ transformer has 80 turns on the secondary calculate,
 - (i) Rated primary and secondary currents
 - (ii) Number of primary and secondary turns
 - (iii) Maximum flux
 - (iv) Voltage induced per turn.

* * * *