P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)

Second Semester, B.E. - Semester End Examination; June - 2016
 Electronic Devices and Communication

(Common to All Branches)
Time: 3 hrs
Max. Marks: 100
Note: i) Answer FIVE full questions, selecting ONE full question from each unit.
ii) Assume missing data suitably.

UNIT - I

1 a. Explain full wave rectification and write the value of V_{dc}.
b. Determine I_{D}, V_{D} and V_{O} for the circuit shown in Fig.1;

c. For the network shown in Fig.2, determine the range of R_{L} and I_{L} that will result in $V_{R L}$ being maintained at 10 V and also determine the maximum wattage rating of the diode.

2 a . Explain working principle of photo conductive cells.
b. Determine $V_{0}, I_{1}, I_{D 1}$ and $I_{D 2}$ for the parallel diode configuration shown in Fig.3, $E=10 \mathrm{~V}$

c. What are photo diodes? Explain the V-I characteristics of Photodiodes.

UNIT - II
3 a. With neat diagram, explain the operation of an N-channel Depletion type MOSFET and write its transfer characteristics.
b. Explain the construction and characteristics of an N-channel MESFET.
c. Explain the $\mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{GSQ}}$ and V_{D} for the network shown in Fig.4.

fig 4.
4 a . Explain E-MOSFET ac small-signal model and give the equation for g_{m}.
b. Write the block diagram of feedback circuit used as an oscillator and explain Barkhausen criterion for oscillation.
c. Describe the ideal phase-shift oscillator and write the practical circuits for FET Version and explain.

UNIT - III
5 a. Explain the concept of virtual ground. Sketch the following circuits and explain their operation:
(i) Non-Inverting amplifier
(ii) Integrator.
b. Explain the following $\mathrm{Op}-\mathrm{amp}$ specification frequency parameters :
(i) Gain Band width
(ii) Slew Rate (SR)
(iii) Maximum signal frequency
(iv) Output offset frequency
c. Determine the output voltage of an Op-amp for input voltages of $\mathrm{V}_{\mathrm{i} 1}=150 \mu \mathrm{~V}$ and $\mathrm{V}_{\mathrm{i} 2}=140 \mu \mathrm{~V}$. The amplifier has a differential gain of $\mathrm{A}_{\mathrm{d}}=4000$ and the value of CMRR is:
(i) 100
(ii) 10^{5}

6 a. Show the connection of an LM124 quad Op-amp as a three-stage amplifier with gain of +10 , -18 and -27 . Use a $270 \mathrm{k} \Omega$ feedback resistor for all three circuits. What output voltage will result for an input of $150 \mu \mathrm{~V}$?
b. Draw the circuit diagram of voltage controlled voltage source and voltage controlled current source. Derive an expression for output current I_{0}.
c. Draw the circuit and frequency response of a first order High pass filter and explain its operation.

UNIT - IV
7 a . Explain the working of microprocessor with neat block diagram.
b. Write in brief about 8 -bit, 16 -bit and 32 -bit micro controllers.
c. Calculate the equivalent values :
(i) $(101010111100)_{2}=(?)_{8}=(?)_{16}$
(ii) $(240)_{10}=(?)_{2}=(?)_{\mathrm{BCD}}$

8 a. Explain the Internal RAM of 8051.
b. Explain the following : (i) PSW
(ii) Special function Register (SFR).
c. Explain in detail stack and stack pointer.

UNIT - V

9 a . Define the following terms :
(i) Mobile station
(ii) SIM
(iii) MSC
(iv) Hand-off
(v) FDD
(vi) full duplex.
b. Explain the call establishment procedure for mobile to PSTN.
c. With neat diagram explain the working of basic paging system. 6

10 a . List out the advantages and disadvantages of cellular system. 6
b. Explain briefly the frequency reuse concept in cellular system. 8
c. With neat figure explain the GSM reference architecture.

