\section*{U.S.N | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
First Semester, B.E. - Make-up Examination; Jan / Feb - 2017
Electronic Devices and Communication
(Common to all Branches)
Max. Marks: 100
Time: 3 hrs
Note: Answer FIVE full questions, selecting ONE full question from each unit.
UNIT - I
1 a. Explain the operation of full-wave bridge rectifier with neat diagram and also derive the PIV across diode.
b. Determine $\mathrm{I}, \mathrm{V}_{1}, \mathrm{~V}_{2}$, and V_{0} for the series dc configuration of a Fig. 1 shown below.
 diagram and its characteristics.

2 a . With neat cross section of solar cell, discuss its working.
b. (i) Sketch the output V_{0} and determine the dc level of the output for circuit shown in Fig. 3
(ii) Repeat the same (i) if the ideal diode is replaced by a silicon diode.
(iii) Repeat (i) and (ii) if V_{m} is increased to 200 V .

c. Explain photo conductive cell. Discuss one of the applications of photo conductive cell.

UNIT - II

3 a. Explain the operation of P-channel enhancement type MOSFET and draw the V-I characteristic.
b. With neat diagram, explain the operation of phase shift oscillator (FET).
c. Describe the construction and working of VMOS.

4 a . With a neat diagram explain the construction and V-I characteristics of N-MESFET.
b. Determine the following for the network of Fig.5, if $\mathrm{V}_{\mathrm{GSQ}}=0.35 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{dQ}}=7.6 \mathrm{~mA}$
i) g_{m} and compare to $g_{m o}$
ii) r_{d}
iii) sketch ac equivalent circuit
iv) Z_{i}
v) Z_{0}
vi) A_{v}

Fig. 5
c. Explain the Barkhausen criteria for oscillation.

UNIT - III

5 a. Explain the concept of virtual short and offset nulling.
b. Calculate the output voltage of an Op-Amp inverting summering amplifier for the following set of voltage and resistor;
i) $\mathrm{V}_{1}=+1 \mathrm{~V}, \mathrm{~V}_{2}=+2 \mathrm{~V}, \mathrm{~V}_{3}=+3 \mathrm{~V}, \mathrm{R}_{1}=500 \mathrm{k} \Omega, \mathrm{R}_{2}=1 \mathrm{M} \Omega, \mathrm{R}_{3}=1 \mathrm{M} \Omega$.
ii) $\mathrm{V}_{1}=-2 \mathrm{~V}, \mathrm{~V}_{2}=+3 \mathrm{~V}, \mathrm{~V}_{3}=+1 \mathrm{~V}, \mathrm{R}_{1}=200 \mathrm{k} \Omega, \mathrm{R}_{2}=500 \mathrm{k} \Omega, \mathrm{R}_{3}=1 \mathrm{M} \Omega$.

Use $R_{f}=1 \mathrm{M} \Omega$ in all cases.
c. Define slew rate of an Op-Amp. For an Op-Amp having a slew rate of $2 \mathrm{~V} / \mu \mathrm{s}$. What is the maximum closed loop gain that can be used when input voltage varies by 0.5 V in $10 \mu \mathrm{~s}$?
6 a. i) Discuss the operation of voltage controlled voltage source and write an expression for V_{0}.
ii) Discuss the operation of current controlled current source and write an expression for I_{0}.
b. Show the connection of an LM124 quad Op-Amp as a three stage amplifier with gain of $+10,-18$, and -27 . Use $270 \mathrm{k} \Omega$ feedback resistor for all three circuits. What output voltage will result for an input of $150 \mu \mathrm{~V}$?
c. With neat diagrams, explain the operation of first order low pass and high pass filters.

UNIT - IV

7 a. Briefly explain the features of 8 bit, 16 bit and 32 bit Microcontroller.
b. Briefly discuss PSW of 8051 with frame format.
c. Calculate the equivalent for following;

8 a. With neat block diagram, explain the architectural features of 8051.
b. Discuss the need for stack memory in Microcontroller. Explain the stack operation in 8051 with example.
c. Compute the following using 1's and 2's compliment :
i) $(1111)_{2}-(1000)_{2}$
ii) $(0101)_{2}-(1010)_{2}$
UNIT - V

9 a. With neat block diagram, explain the paging system.
b. Write and explain the block schematic of Basic cellular networks. 7
c. Briefly explain the handoff strategies and also practical handoff considerations.

10 a. With a neat block diagram, explain the first generation cellular radio network.
b. If a total of 33 MHz of bandwidth is allocated to a particular FDD cellular telephone system which uses two 25 kHz simplex channels to provide full duplex voice and control channels, compute the number of channels available per cell, if a system uses i) four cell reuse, ii) seven cell reuse, iii) twelve cell reuse. If a 1 MHz of the allocated spectrum is dedicated to control channels, determine an equitable distribution of control channels and voice channels in each cell for each of three systems.
c. Compare the common wireless communication system for a base Station.

