
\square

P.E.S. College of Engineering, Mandy - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
Second Semester - B.E. - Semester End Examination; June - 2016
Basic Electrical Engineering
(Common to All Branches)
Time: 3 hrs
Max. Marks: 100
Note: i) Answer FIVE full questions, selecting ONE full question from each unit.
ii) Missing data may suitably assume.

UNIT - I

1 a. Explain the following terms with necessary derivations :
(i) Statistically induced emf
(ii) Mutually induced emf
b. In the circuit shown in Fig. Q.1(b) power dissipated in 10Ω resistor is 40 W . Determine the value of R.
 induced emf.
2 a. Derive an expression for the energy stored in a magnetic field.
b. Two resistors are connected in parallel across 100 V DC supply current drawn by the circuit is 10 A and the power dissipated in one resistor is 600 W . What is the current drawn by the
c. A coil of 150 turns is linked with a flux of 0.01 wb when carrying a current of 10 A , Calculate the inductance of the coil. If this current is uniformly reversed in 0.01 second, Calculate the resistors when they are connected in series across the same supply?
c. The self inductance of a coil having 500 turns is 0.25 H . If 60% of the flux is linked with a second coil of 10,000 turns calculate;
(i) Mutual inductance of the two coils,
(ii) E.M.F. induced in the second coil when current in the first coil changes at the rate of $100 \mathrm{~A} / \mathrm{sec}$.

UNIT - II

3 a. Distinguish between lagging power factor and leading power factor in a.c. circuits. Show that current in a R-C circuit leads the voltage by an angle申. Draw necessary circuit diagram, vector diagram and waveforms.
b. A voltage of 100 V at 50 Hz is applied to a R-L series circuit. The current in the circuit is 5 A lagging behind the voltage by 35°. Write the expression for the current and voltage. Find the values of R and L .
c. An alternating emf is mathematically expressed as $e=200 \sin 314 t$. Find ;
(i) The amplitude
(ii) Frequency
(iii) The instantaneous value, when $t=1 / 200 \mathrm{sec}$.

4 a. Define Average value and RMS value of a sinusoidal alternating current. Derive an expression for RMS value of a sinusoidal waveform.
b. What is meant by phase angle between two alternating of quantities? Show that the average power in an ac circuit is given by $P=V I \cos \phi$.
c. A voltage $v=100 \operatorname{Sin} 314 t$ is applied to a circuit consisting of a 25Ω resistor and an 80 microfarad capacitor in series. Determine ;
(i) An expression for the value of current
(ii) The power consumed by the circuit.

UNIT - III

5 a. Establish the relation between phase and line values of voltages and currents in 3 phase star connected circuit. Draw the phasor diagram.
b. Three equal impedances each having a resistance of 8Ω and inductance reactance of 6Ω are connected in star across a 3 phase 440 V system. Find;
(i) Phase current
(ii) Line current
(iii) Total power consumed.
c. With the help of a neat diagram, describe the constructional features and working of a Dynamometer wattmeter.
6 a. Mention the advantages of 3 phase system over single phase system.
b. A balanced star connected load is supplied from a balanced 3 phase $400 \mathrm{~V}, 50 \mathrm{~Hz}$ system. The current in each phase is 30 A and lags 30° behind the phase voltage. Draw the phasor diagram.
c. What do you mean by earthing? Explain why installations must be earthed. With a neat diagram explain plate earthing.

UNIT - IV

7 a. With usual notations derive an expression for the induced EMF of a DC machine.
b. 4 pole 250 V series motor has a wave connected armature with 1254 conductors. The flux per pole is 22 mwb when the motor is taking 50 A . Armature resistance is 0.2Ω. Calculate the speed.
c. With neat diagrams explain different types of rotors used in synchronous generators where are the two types used.

8 a. List different types of DC motors. Write the circuit representation of each type and explain.
b. A 250 V shunt motor takes a total current of 20 A . Resistance of the shunt field is 200Ω and of the armature 0.3Ω. Find the current in the armature and back emf.
c. Starting from basic principles, develop an expression for the emf induced in an alternator.

UNIT - V
9 a. Explain with a neat sketch construction of a shell type transformer.
b. Explain the principle of operation of a transformer.
c. In a $25 \mathrm{kVA} 2000 / 200 \mathrm{~V}$ transformer, the iron and Copper losses are 350 W and 400 W respectively. Calculate the efficiency at UPF at half full load.
d. Briefly explain the construction and principle of operation of a 3 phase squirrel cage induction motor.

10 a. Explain briefly various losses that occur in a transformer.
b. Derive the EMF equation of a transformer from fundamentals.

6
c. Explain the principle of operation of Induction motor. Why does it require a starter? Can it be run at synchronous speed? Why?
d. If the electromotive force in the stator of an 8 pole Induction motor has a frequency of 50 Hz and that in the rotor 1.5 Hz , at what speed is the motor running and what is the slip?

