U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

First Semester, B.E. - Make-up Examination; Jan / Feb - 2017 Engineering Chemistry

(Common to all Branches)

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

	UNIT - I						
1 a.	What are fuels? How are they classified? Mention example for each.	5					
b.	b. Define cracking and explain fluidized catalytic cracking process.						
c.	Explain octane number and cetane number.	5					
d.	Calculate the GCV and NCV of a gaseous fuel at STP given 0.03 m ³ of the gas at STP raised						
	the temperature of 6 kg of water by 16°C and 13.8 cm ³ of water was collected. Specific heat of						
	water is 4.187 kJ/kg/°C and latent heat of steam at STP is 2.457 kJ/kg.						
2 a.	State Gibbs phase rule. Explain the terms involved in the phase rule with example.	6					
b.	b. Draw a neat labeled phase diagram of water system and explain areas, curves and triple						
	point in it.	7					
c.	Write short notes on:	4					
	i) Reformation of Petrol ii) Unleaded petrol.	3					
	UNIT - II						
3 a.	Define single electrode potential and derive Nernst's equation for single electrode.	5					
b.	Describe the construction and working of calomel electrode.	5					
c.	Explain the determination of pH of an electrolyte using glass electrode.	5					
d.	A cell is formed by dipping Nickel rod in 0.01 m Ni ²⁺ solution and lead rod in 0.5 m Pb ²⁺						
	solution. The standard electrode potential of Ni and Pb are 0.24 V and -0.13 V respectively.						
	Write the cell reaction, cell representation and calculate the emf of the cell.						
4 a.	4 a. Discuss the following battery characteristics :						
	i) EMF ii) Capacity iii) Shelf life.	6					
b.	Explain the construction, working and applications of Nickel-Metal hydride battery.	5					
c.	Write the differences between battery and fuel cell.	4					
d.	Give the construction, working and applications of H ₂ -O ₂ fuel cell.	5					
	UNIT - III						
5 a.	Define corrosion. Explain the differential aeration theory of corrosion with example.	6					
b.	Explain the cathodic protection of corrosion.	5					
c.	Write a short note on corrosion inhibitors.	5					

P15CH12/22 Page No... 2 d. Discuss the following factors on the rate of corrosion: 4 ii) Nature of metal. i) pH 6. a. What is metal finishing? Mention the technological importance of metal finishing. 5 b. Explain the following factors affecting the nature of electro deposit: 6 i) Complexing agent Hq (ii iii) Temperature. c. Write the differences between electroplating and electroless plating. 4 d. Describe the process of electroless plating of Nickel. 5 **UNIT - IV** 7 a. What are adhesives? Give the synthesis and applications of epoxy resin. 5 b. Explain the preparation, properties and applications of the following polymers: 9 i) PMMA ii) Kevlar iii) Urea formaldehyde resin. c. How silicon rubber is synthesized? Mention the applications of silicon rubber. 6 8 a. Discuss the following properties of cement: 9 i) Soundness ii) Quality iii) Setting time. b. Write short notes on: 6 i) Vulcanization ii) Compounding of rubber. c. Define lubricant and discuss the important functions of lubricant. 5 UNIT - V 9 a. Distinguish between thermo tropic and lyotropic liquid crystals. 7 b. Explain the applications of liquid crystals in display systems. 6 c. How nano crystals are prepared by chemical vapour deposition method and give their 7 applications. 10 a. What are boiler scales? Explain how boiler scales are formed and mention the ill effects? 6 7 b. Explain the various steps involved in the treatment of water for municipal supply.

7

c. What is desalination? Explain the desalination of sea water by electrolysis.