P15MA11

Page No... 1

U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

First Semester, B.E. – Make-up Examination; Jan/Feb - 2016 Engineering Mathematics - I

(Common to all Branches)

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions selecting ONE full question from each unit.

UNIT - I

- 1 a. Find the nth derivative of (i) $y = \log_{10} \sqrt{(2x+3)(4-3x)}$ (ii) $y = e^{2x} \cdot \sin^3 x$
 - b. Find the nth derivation of $y = \frac{x^2}{(2x-1)(x^2-6x+9)}$
 - c. If $y = e^{m\sin^{-1}x}$, Prove that, $(1-x^2) y_{n+2} - (2n+1) x y_{n+1} - (m^2 + n^2) y_n = 0$
- 2 a. State Lagrange's mean value theorem and verify the same for the function: f(x) = (x-1)(x-2)(x-3) in [0, 4]
 - b. Obtain the Taylor's series expansion of $\log_e x$ in powers of (x-1) upto sixth degree terms and hence find $\log_e (1.1)$
 - c. Using Maclaurin's series. Expand $\log_e \sec x$ in ascending powers of x upto the term containing x^6 .

UNIT - II

- 3 a. Evaluate: (i) $\lim_{x\to 0} \left(\frac{\tan x x}{x^2 \tan x}\right)$ (ii) $\lim_{x\to 0} \left(\log_{\sin x} \sin 2x\right)$
 - b. Evaluate; (i) $\lim_{x \to \frac{\pi}{2}} (\sec x \tan x)$ (ii) $\lim_{x \to a} \left(2 \frac{x}{a} \right)^{\tan \frac{\pi x}{2a}}$
- c. Find the angle of intersection of the curves $r = \sin \theta + \cos \theta$ and $r = 2\sin \theta$
- 4 a. Find the Pedal equation of the curve $r^m = a^m (\cos m\theta + \sin m\theta)$
- b. For the cardioid $r = a(1 + \cos \theta)$, show that $\frac{\rho^2}{r}$ is constant.
- c. Show that the radius of curvature of the curve $x = a\cos^3\theta$, $y = a\sin^3\theta$ is $3a\sin\theta\cos\theta$

UNIT - III

- 5 a. If $z(x+y) = x^2 + y^2$, show that $\left(\frac{\partial z}{\partial x} \frac{\partial z}{\partial y}\right)^2 = 4\left(1 \frac{\partial z}{\partial x} \frac{\partial z}{\partial y}\right)$
 - b. State Euler's theorem for a function of two variables and use it to find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$,
 - if $u = \sin^{-1}\left(\frac{x^2y^2}{x-y}\right)$
 - c. If u = f(x, y) and $x = r \cos \theta$, $y = r \sin \theta$. Prove that $\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = \left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2$

7

P15MA11

6

7

- 6 a. A particle moves along the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5 where t is time. Find the components of velocity and acceleration at t=1, in the direction of $\hat{i} 3\hat{j} + 2\hat{k}$
 - b. Find div \vec{F} and curl \vec{F} at the point (1, 2, 3), if $\vec{F} = \operatorname{grad}\left(x^3 + y^3 + z^3 3xyz\right)$
- c. Find a, b, c such that $\vec{F} = (x + y + az)\hat{z} + (bx + 2y z)\hat{j} + (x + cy + 2z)\hat{k}$ is irrotational. Hence find ϕ such that $\vec{F} = \nabla \phi$

UNIT-IV

- 7 a. Obtain a reduction formula for $\int \cos^n x \, dx$ and $\int_0^{\frac{\pi}{2}} \cos^n x \, dx$, where n is a positive integer.
 - b. Evaluate: i) $\int_{0}^{\pi} x \sin^{8} x dx$ ii) $\int_{0}^{\infty} \frac{x^{4}}{(1+x^{2})^{4}} dx$.
 - c. Trace the curve: $y^2(a-x) = x^3$, a > 0
- 8 a. Find the area enclosed by the Astroid: $x^{2/3} + y^{2/3} = a^{2/3}$
 - b. Find the surface area of revolution of the curve $r = a(1 + \cos \theta)$ about the initial line.
- c. By differentiating under the integral sign, evaluate $\int_{0}^{\infty} \frac{e^{-\alpha x} \sin x}{x} dx$ and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$

UNIT - V

- 9 a. Solve: $\left(x \tan \frac{y}{x} y \sec^2 \frac{y}{x}\right) dx + x \sec^2 \left(\frac{y}{x}\right) dy = 0$
 - b. Solve: $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$
 - C. Solve: $(y^2 e^{xy^2} + 4x^3) dx + (2xy e^{xy^2} 3y^2) dy = 0$
- 10a. Solve: $(x^2 + y^3 + 6x)dx + xy^2dy = 0$
 - b. Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$, where λ is the parameter.
 - c. When a resistance R omhs is connected in series with an inductance L henries, an e.m.f. E volts, the current i amperes at any time t is given by $L\frac{di}{dt} + Ri = E$. if E = 10 sint volts and i = 0, when t = 0. Find i as a function of t.

* * *