P15MA21

				_		
U.S.N						

Page No... 1

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Second Semester, B.E. - Make - up Examination; July - 2016 **Engineering Mathematics - II**

(Common to all Branches)

Time: 3 hrs Max. Marks: 100

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit.

UNIT - I

1. a. Find the constant values of λ and μ such that the system of equations 2x + 3y + 5z = 9,

$$7x + 3y - 2z = 8$$
, $2x + 3y + \lambda z = \mu$ may have,

6

- i) Unique solution ii) Infinite solution
- iii) No solution.
- b. Solve: 2x + y + z = 10; 3x + 2y + 3z = 18; x + 4y + 9z = 16, using Gauss-Jordan Method.

7

c. Solve: 4x + y + z = 4; x + 4y - 2z = 4; 3x + 2y - 4z = 6, using LU-decomposition method.

7

2 a. Find all the Eigen values and Eigen vector corresponding to the largest Eigen value of the matrix.

$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

6

b. State Cayley-Hamilton theorem and use the same to compute the inverse of the matrix.

7

c. Find the model Matrix P which diagonolizes the matrix $\begin{vmatrix} -1 & 3 \\ -2 & 4 \end{vmatrix}$.

7

UNIT-II

3 a. Solve: y'' - 3y' + 2y = 0; y(0) = -1, y'(0) = 0.

6

b. Solve: $y'' - 4y' + 4y = e^{2x} + \cos 2x + 4$.

c. Solve: $y'' - 2y' + y = xe^x \sin x$.

7

4 a. Solve: $y'' + 3y' + 2y = 12x^2$, by the method of undermined co-efficient.

6

7

b. Solve: $y'' + 2y' + y = e^{-x} \log x$, by the method of variation of parameter.

c. Solve: $(1+x)^2 y'' + (1+x) y' + y = 2\sin[\log(1+x)]$.

7

7

UNIT - III

- 5 a. Find Laplace transform of, i) $e^t \cos^2 t$ ii) $\frac{1-\cos at}{t}$.
 - b. Find the Laplace transform of the triangular wave of period 2a given by $\int_{a}^{b} t, \quad 0 < t < a$

$$f(t) = \begin{cases} t, & 0 < t < a \\ 2a - t, & a < t < 2a \end{cases}$$

Hence show that $L\{f(t)\} = \frac{1}{s^2} \tanh\left(\frac{as}{2}\right)$.

c. Express $f(t) = \begin{cases} 1, & 0 \le t \le 1 \\ t, & 1 < t \le 2 \\ t^2, & t > 2 \end{cases}$

in terms of Heaviside unit step function and hence find its Laplace transform.

6 a. Find the Inverse Laplace transform of the following:

i)
$$\frac{3s^2 + 4}{s^5}$$
 ii) $\log\left(\frac{s+a}{s+b}\right)$.

- b. Find the inverse Laplace transform of $\frac{s^2}{\left(s^2+a^2\right)\left(s^2+b^2\right)}$ by using convolution theorem.
- c. Solve: y''' + 2y'' y' 2y = 0; y(0) = y'(0) = 0 and y''(0) = 6 by the method of Laplace transform.

UNIT - IV

- 7 a. If $u = \frac{yz}{x}$, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$, S.T. $J\left(\frac{u, v, w}{x, y, z}\right) = 4$.
 - b. Obtain the Taylor's expansion of $f(x, y) = \tan^{-1}\left(\frac{y}{x}\right)$ about (1, 1) upto second degree terms.
 - c. Using the Lagrange's method of undetermined multipliers. Find the stationary value of the function $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraint $xy + yz + zx = 3a^2$.
- 8 a. Using Green's theorem in the plane, evaluate $\int_{c} (2x^2 y^2) dx + (x^2 + y^2) dy$ where C is the boundary of the region bounded by x = 0, y = 0, x + y = 1.
 - b. If $\vec{F} = 2xy\hat{i} + yz^2\hat{j} + xz\hat{k}$ and S is the rectangular parallel piped bounded by x = 0, y = 0, z = 0, x = 2, y = 1, z = 3 evaluate $\iint_{S} \vec{F} \cdot \hat{n} \, ds$ using Gauss divergence theorem.
 - ^C· Evaluate $\int_{c} \vec{F} \cdot d\vec{r}$ by Stoke's theorem where $\vec{F} = y^2 \hat{i} + x^2 \hat{j} (x+z) \hat{k}$ and C is the boundary of the triangle with vertices at (0,0,0), (1,0,0) and (1,1,0).

UNIT - V

- 9 a. Evaluate: $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y+z} dz \, dy \, dx$.
 - b. Evaluate: $\iint_R xy \, dx \, dy$ Where R is the region bounded by the co-ordinate axes and the line x+y=1.
 - c. Evaluate: $\int_{0}^{3} \int_{1}^{\sqrt{4-y}} (x+y) dx dy$ by changing the order of integration.
- 10 a. Find by double integration the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$.
 - b. Using triple integrals, find the volume of the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.
 - c. Define Gamma function Show that,
 - $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} \ d\theta \times \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin \theta}} \ d\theta = \pi.$

* * * *