Time: 3 hrs

Max. Marks: 100

6

7

7

6

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- 1. a. Find the interpolating polynomial for the function y = f(x) given by f(0) = 1, f(1) = 2, f(2) = 1, f(3) = 10 by using Netwon's forward formula.
 - b. Given the data

x	5	7	11	13	17
f(x)	150	392	1452	2366	5202

Find f(9) and f(18) using Newton's divided difference formula.

c. Using Lagrange's interpolation formula find f(5) from the following data:

x	1	3	4	6	9
f (<i>x</i>)	-3	9	30	132	156

2 a. Given the data

x	-2	-1	0	1	2	3
У	0	0	6	24	60	120

Compute $\left(\frac{dy}{dx}\right)_{x=2}$ and $\left(\frac{d^2y}{dx^2}\right)_{x=4.5}$

b	Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ by applying Simpson's $\frac{3}{8}^{\text{th}}$ rule by dividing the interval into six equal parts.	7
	Hence deduce the value of $\log_e 2$.	
c.	Evaluate $\int_{4}^{5.2} \log_e x dx$ by using Weddle's rule.	7
	UNIT - II	
3 a.	Find the Fourier series of $x(2\pi - x)$ in the interval $(0, 2\pi)$.	6
b	Find the Fourier series of x^2 in the interval $(-\pi,\pi)$, Hence deduce $\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$.	7
c.	Find the complex form of the Fourier series of $f(x) = e^{-x}$ in $-1 \le x \le 1$.	7
4 a.	Find the Fourier series for the function $f(x) = x(2-x)$ in [0,2].	6
b	• Find the half range cosine series for the function $f(x) = \begin{cases} kx, & 0 \le x \le \frac{l}{2} \\ k(l-x), & \frac{l}{2} \le x \le l \end{cases}$	7

Contd....2

Page No... 2

P13MA31

c. Find the constant term and first harmonic in the Fourier series for f(x) given by the following table.

x	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
f(x)	1.0	1.4	1.9	1.7	1.5	1.2	1.0

UNIT - III

5 a. Find the Fourier transform of the function

$$f(x) = \begin{cases} 1 - |x|, & |x| \le 1\\ 0, & |x| > 1 \end{cases}$$

b.	Find the Fourier cosine transform of e^{-ax} and hence deduce that $\int_{0}^{\infty} \frac{\cos mx}{x^2 + a^2} dx = \frac{\pi}{2a} e^{-am}$
c.	Solve the integral equation $\int_{0}^{\infty} f(x) \cos \alpha x dx = \begin{cases} 1 - \alpha, & 0 \le \alpha \le 1 \\ 0, & \alpha > 1 \end{cases}$
6 a.	Find the Z-transform of Coshn θ and Sinhn θ
b.	Compute the inverse Z-transforms of $\frac{3z^2+2z}{(5z-1)(5z+2)}$.
с.	Using Z-transforms solve the difference equation $y_{n+2} + 4y_{n+1} + 4y_n = 7$, with $y_0 = 1$, $y_1 = 2$.
	UNIT - IV
7 a.	Form the partial differential equation by eliminating the arbitrary functions form $z = f(x+at) + g(x-at)$.
b.	Solve $\frac{\partial^2 z}{\partial x^2} + z = 0$, given that when $x = 0$, $z = e^y$ and $\frac{\partial z}{\partial x} = 1$
c.	Solve $x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$.
8 a.	Find the various possible solutions of the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ by the method of
	separation of variables.
b.	Solve the wave equation $c^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$ $0 < x < \pi$ under the following conditions
	$u(0, t) = u(\pi, t) = 0, u(x, 0) = Ax(\pi^2 - x^2), \frac{\partial u}{\partial t}(x, 0) = 0$
	UNIT - V
9 a.	Test for convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots$
	Test for the convergence of the series $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \dots$
c.	Test whether the following series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ is absolutely convergent or conditionally
	convergent.
10. a.	Obtain the series solution of the equation $\frac{d^2 y}{dx^2} + xy = 0$.
b.	Prove that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$ and $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$

c. Express $f(x) = x^4 + 3x^3 - x^2 + 5x - 2$ in terms of Legendre polynomials.