P13MA31							Pag	je No 1	
Contento estate apple				U.	S.N				
A state	P.E.	S. Coll	lege of	Engi	neering	g, Man	dya - 5	71 401	
	(An Autor	nomous I	nstitutio	on affiliate	ed to VTU	, Belgau	<i>m</i>)	
Thi	rd Seme			_	Examinat		/Feb - 20	015	
		0		•	ematics – Branches				
Time: 3 hrs)	Max. Marks: 100						
Note: Answer		-		at least (ONE full q	uestion fro	om each un	eit.	
Use of s	tatistical	table is all	lowed.						
				Unit -					
a. From the fo							less than 4	15 marks and	
	ween 41 and 45 ma Marks		30 - 40 $40 -$				70 7	70 - 80	
	Students			42	51	35		31	
b. Using Newt		ded differe	ence form	ula. Find	an interpo	lating poly	nomial y	= f(x) for the	
Tollowing d	ollowing data.		4	5	6	8	10	10	
_	x f(x)	2 10	96	196	350	868	1746		
Hence find	f(x)	10	90	190	330	000	1740		
c. Use Lagran		polation fo	rmula to I	Find $f(A)$	aiven				
e. Ose Lagran	ge s mer			2	3	6			
		f(x)	-4	2	14	156			
2 a. Find y'(2) a	nd y"(4.5		at						
2 ()	x	-2	-1	0	1	2	3]	
	у	0	0	6	24	60	120		
b. Evaluate $\int_{2}^{8} \pi/2$		y using Sir	mpson's 1	$\frac{1}{3}$ rd rule	e (taking 6	equal parts	5).	J	
2									
c. Evaluate $\int_{0}^{\frac{\pi}{2}}$	$\sqrt{\cos x} dx$	by using `	Weddle's	rule.					

3 a. Find the Fourier series for the function $f(x) = x - x^2$ in $-\pi < x < \pi$

b. Find the Fourier series of f(x) given by $f(x) = \begin{cases} x, & \text{in } 0 \le x \le \pi \\ 2\pi - x, & \text{in } \pi \le x \le 2\pi \end{cases}$

Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

- c. Obtain the Fourier series of the function $f(x) = 2x x^2$ in 0 < x < 3
- 4 a. Find the Fourier series for the function $f(x) = \begin{cases} 2, & \text{for } -2 < x < 0 \\ x, & \text{for } 0 < x < 2 \end{cases}$ over [-2, 2] 7
 - b. Find the half range cosine series for the function $f(x) = (x-1)^2$ in 0 < x < 1 7

7

7

6

7

7

6

7

7

6

P13MA31

6

7

6

c. Express y as a Fourier series upto the first harmonic from the following data.

x	0	$\frac{\pi}{3}$	^{2π} / ₃	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
f(x)	1.0	1.4	1.9	1.7	1.5	1.2	1.0

Unit - III

5 a. Find the complex Fourier transform of

$$f(x) = \begin{cases} 1 & \text{for } |x| \le 1\\ 0, & \text{for } |x| > 1 \end{cases}$$
 Hence deduce that $\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$

- b. Find the Fourier sine transform of $f(x) = e^{-|x|}$ and hence evaluate $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx$, m > 07
- c. Solve the integral equation $\int_{0}^{\infty} f(x) \cos \alpha x dx = \begin{cases} 1-\alpha, & 0 \le x \le 1\\ 0, & x > 1 \end{cases}$ and hence deduce that

$$\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx = \frac{\pi}{2}$$

- 6 a. Find the Z-transform of $cosn\theta$ and $sinn\theta$ and hence deduce Z-transform of $a^n cosn\theta$ 7 and $a^n sinn \theta$
 - b. Compute the inverse Z-transforms of $\frac{2z^2+3z}{(z+2)(z-4)}$ 7
 - c. Solve the difference equation $y_{n+2} 5y_{n+1} + 6y_n = 1$, with $y_0 = 0$, $y_1 = 1$ by using Z-Transform. 6

Unit - IV

- 7 a. Form the partial differential equation by eliminating the arbitrary functions from 7 $z = yf(x) + x\phi(y)$
- b. Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ given that $u(x, 0) = 6 e^{-3x}$ using the method of separation of variables. 7 6

c. Solve
$$x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$$

8 a. Find the various possible solutions of the one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} = 0$ by 10 the method of separation of variables.

b. Solve the heat equation
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 given that $u(0,t) = 0$, $u(l,t) = 0$ and $u(x,0) = \frac{100x}{l}$ 10
Unit -V

9 a. Test for convergence or divergence of (i)
$$\sum_{n=1}^{\infty} \sqrt{n+1} - \sqrt{n}$$
. (ii) $\sum_{n=1}^{\infty} \left(1 - \frac{3}{n}\right)^{n^2}$. 7

b. Find the nature of the series
$$\frac{1}{2}x + \frac{1.3}{2.4}x^2 + \frac{1.3.5}{2.4.6}x^3 + \dots$$
 7

c. Discuss the nature of the series $1 - \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} - \frac{1}{4\sqrt{4}} + \dots$ 6

for i) Convergence ii) absolute convergence iii) Conditional convergence

10. a. Obtain the series solution of the equation
$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$$
 7

b. Prove that (i)
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$
 (ii) $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$ 7

c. Express $f(x) = x^3 + 2x^2 - 4x + 5$ in terms of Legendre's polynomials. 6