U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B. E. - Semester End Examination; Dec. - 2014 Engineering Mathematics – III (Common to all Branches)

Time: 3 hrs

Max. Marks: 100

Page No... 1

Note: i) Answer FIVE full questions, selecting ONE full question from each Unit. ii) Assume suitable missing data if any.

Unit - I

1. a. The following data gives the melting point of an alloy of lead and Zinc, where t is the temperature in °C and P is the percentage of lead in the alloy.

P (%)	60	70	80	90
t	226	250	276	304

Find the melting point of the alloy containing 84% of lead. Using Newton's interpolation formula.

b. Using Lagrange's formula, evaluate f (9) from the following table.

x	5	7	11	13	17
f (<i>x</i>)	150	392	1452	2366	5202

c. Using Newton's divided difference formula, find f (8) and f (15) from the following data.

x	4	5	7	10	11	13
f(<i>x</i>)	48	100	294	900	1210	2028

2 a. Given

y 2.72 3.32 4.06 4.96 6.05 7.39	x	1.0	1.2	1.4	1.6	1.8	2.0
	У	2.72	3.32	4.06	4.96	6.05	7.39

Find y' and y'' at x = 1.2

- b. Using Simpson's $\frac{3}{8}^{\text{th}}$ rule, evaluate $\int_{0}^{0.3} \sqrt{1-8x^3} dx$ taking 7 ordinates. 7
- c. Evaluate $\int_{0}^{1} \frac{x \, dx}{1 + x^2}$ by using Weddle's rule .Hence find the value of log2.

Unit - II

3 a. Find the Fourier expansion for the function
$$f(x) = \left(\frac{\pi - x}{2}\right)^2$$
 in (0, 2π)

b. Obtain the Fourier series of
$$f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$$
 and hence deduce that $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ 7

c. Obtain the Fourier expansion of $f(x) = \begin{cases} l-x, & 0 < x < l \\ 0, & l < x < 2l \end{cases}$ over [0.2*l*] 7

4 a. Obtain the Fourier series for the function $f(x) = \begin{cases} \pi x, & in \quad 0 \le x \le 1 \\ \pi(2-x), & in \quad 1 < x < 2 \end{cases}$ over the interval (0, 2) 6

b. Expand the function $f(x) = x(\pi - x)$ over the interval (0, π) in half – range Fourier cosine series and hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

7

6

6

7

6

Page No... 2

c.	Compute the constant term and the first harmonic in the Fourier series of $f(x)$ given by following table.											
	x	0	$\frac{\pi}{3}$	$2\pi/_{3}$	π	$4\pi/_{3}$	$5\pi/_{3}$	2π	7			
	f(x)	1.0	1.4	1.9	1.7	1.5	1.2	1.0				
				Unit	t - III							
5 a.	Find the Fourier transform of											
	$f(x) = \begin{cases} 1 - x , & \text{for } x \le 1\\ 0, & \text{for } x > 1 \end{cases} \text{ and hence deduce } \int_{0}^{\infty} \frac{\sin^2 t}{t^2} dt = \frac{\pi}{2} \end{cases}$											
b.	Find the Fourier sine transform of $f(x) = e^{- x }$ and hence evaluate $\int_{0}^{\infty} \frac{x \sin mx}{1 + x^2} dx$, $m > 0$											
c.	Obtain the	Fourier cosi	ne transform	of the func	etion $f(x) =$	$\begin{cases} 4x, & 0 < x \\ 4-x, & 1 < x \\ 0, & x > \end{cases}$	<1 <4 4		7			
6 a.	Obtain the Z-transform of $sin(3n+5)+(n+1)^2$											
b.	Find the inverse Z-transform of $\frac{4z^2 - 2z}{(z-1)(z-2)^2}$											
c.	Using Z-transforms solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0$, $u_1 = 1$											
7 a.	Unit - IV Form the partial differential equation by eliminating the arbitrary function in $z = y^2 + 2f(\frac{1}{x} + \log y)$											
b.	Solve $(y+z)p+(z+x)q = x+y$								7			
c.	Solve by the method of separation of variables $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, where $u(x, 0) = 6e^{-3x}$								7			
8 a.	Find the various possible solutions of two dimensional Laplace equations $u_{xx} + u_{yy} = 0$ by the method of separation of variables.											
b.	Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ given that $u(0, t) = 0$, $u(1, t) = 0$, $\frac{\partial u}{\partial t} = 0$ when $t = 0$ and											
	$\mathbf{u}(x,0)=\mathbf{u}_0$		01 07	,			01		10			
				Uni	t - V							
9 a.	Examine th	e convergen	ce of series:	$\frac{\sqrt{2}}{3^3}$	$\frac{2}{-1} + \frac{\sqrt{3}-1}{4^3-1}$	$+\frac{\sqrt{4}-1}{5^{3}-1}+$			6			
b.	Discuss the	nature of th	e series:	$\frac{1}{2}$	$x + \frac{1.3}{2.4}x^2 + \frac{1}{2}$	$\frac{3.5}{4.6}x^3 + \dots$	(x > 0)		7			
c.	Discuss the	nature of se	eries :	$\frac{x}{1.2}$	$-\frac{x^2}{2.3}+\frac{x^3}{3.4}-\frac{x^3}{2.3}$	$\frac{x^4}{4.5}$ +(x >	• 0)		7			
10. a.	Solve y" +.	xy' + y = 0 i	n series:						6			
b.	Prove that	$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} s$	$\sin x$						7			
c.	Express x^3 -	$+2x^2 - 4x + 3$	5 in terms of	Legendre p	polynomials	s.			7			

* * * * *