6

7

7

6

7

7

6

7

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Make-up Examination; Jan/Feb - 2017 Engineering Mathematics - III

(Common to all Branches)

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Find the missing values in the following table:

X	1	1 2	2 3	4	5
u(x)) {	3	64	?	216

b. Find the number of students who have obtained

i) Less than 45 marks ii) Between 40 and 45 marks using the following data.

Marks:	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
No. of Students	31	42	51	35	31

c. Using Newton's general interpolation formula, fit an interpolating polynomial for the data:

Х	-3	0	1	3
f(x)	2	1	0	-1

2 a. Use Lagrange's interpolation formula, find f(10), using the following data:

<i>x</i> :	5	6	9	11
<i>y</i> :	12	13	14	16

b. Use Stirling's interpolation formula to find Y_{35} , given $Y_{20} = 512$, $Y_{30} = 439$, $Y_{40} = 346$ and $Y_{50} = 243$.

c. Find f(2.5) by using Bessel's interpolation formula given that:

<i>x</i> 0		1	2	2 3	
f(x)	7.4720	7.5854	7.6922	7.8119	7.9252

UNIT - II

3 a. Given the data:

х	0	2	4	6	8
f(x)	7	13	43	145	367

Compute f'(7).

b. Find f'(6) and f''(6) from the following data :

х	0	2	3	4	7	9
f(x)	4	26	58	112	466	922

Using Newton's divided difference formula.

P13MA31

c. Find the maximum and minimum value of y from the following data:

х	0	1	2	3	4
у	0	-0.25	2	15.75	56

4 a. Use Boole's formula to evaluate
$$\int_{1}^{5} e^{t/x} dx$$
, taking $h = 1$.

b. Use Simpson's
$$\left(\frac{3}{8}\right)^{th}$$
 rule, evaluate $\int_{0}^{0.3} \sqrt{1-8x^3} dx$ by considering three equal intervals.

c. Using Weddle's rule, evaluate taking 6 equal parts,
$$\int_{4}^{5.2} \log_e x dx$$
.

UNIT - III

5 a. Find the Fourier series of
$$f(x)$$
, if $f(x) = \begin{cases} x, & 0 \le x \le \pi \\ 2\pi - x, & \pi \le x \le 2\pi \end{cases}$

b. Expand
$$f(x) = x - x^2$$
 in terms of Fourier series valid in $-\pi < x < \pi$.

^C· Find the half-range cosine series of
$$f(x) = (x-1)^2$$
 valid in $0 \le x \le 1$. Hence, deduce that,

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$

6 a. Obtain the complex form of the Fourier series for
$$f(x) = x$$
 in $-\pi \le x \le \pi$.

b. Obtain the Fourier series of
$$f(x) = |x|$$
 in $[-l, l]$.

Х	0	$\pi/3$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π
у	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

7 a. Find the Fourier transform of,
$$f(x) = \begin{cases} 1, & \text{for } |x| \le 1 \\ 0, & \text{for } |x| > 1 \end{cases}$$
 and hence evaluate $\int_0^\infty \left(\frac{\sin x}{x}\right) dx$.

$$dx = \frac{\pi}{e^{-m}}, m > 0.$$

b. Find the Fourier sine transform of
$$e^{-|x|}$$
 Hence show that: $\int_0^\infty \frac{x \sin mx}{1+x^2} dx = \frac{\pi}{2} e^{-m}$, $m > 0$.
c. Show that $f(x) = xe^{-x^2/2}$ is self-reciprocal under Fourier cosine transform.

8 a. Find the Z-transforms of
$$cosn\theta$$
 and $sinn\theta$.

b. Obtain the inverse Z -transforms of
$$\frac{z^3 - 20z}{(z-2)^3(z-4)}$$
.

c. Solve,
$$y_{n+2} - 4y_n = 0$$
 with $y_0 = 0$, and $y_1 = 2$, using Z -transforms.

UNIT - V

- 9 a. Form the partial differential equation by eliminating the arbitrary function in $f\left(x^2+y^2,z-xy\right)=0.$
 - b. Solve $\left(\frac{\partial u}{\partial x}\right) = 2\left(\frac{\partial u}{\partial t}\right) + u$ with $u(x,0) = 6e^{-3x}$, by using the method of separation of variables.
 - c. Solve: $x(y^2 z^2)p + y(z^2 x^2)q = z(x^2 y^2)$.
- 10 a Obtain the various possible solutions of $\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$, by the method of separation of variable.
 - b. Solve the heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions, $u(x,0) = 3\sin n\pi x$ and u(0,t) = 0 = u(1,t).

* * *