6

7

7

6

7

7

6

7

7

6

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Semester End Examination; Dec - 2016/Jan - 2017 Engineering Mathematics - III (Common to all Branches)

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Find the missing values in the following table,

х	0	5	10	15	20	25
f(x)	6	10	-	17	-	31

b. Calculate the approximate value of y for x = 0.54 using the following table,

x:	0.5	0.7	0.9	1.1
у	0.47943	0.64422	0.78333	0.89121

c. By means of Newton's divided difference formula, find the value of f(8) and f(15) from the following table,

х	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

2 a. Find the interpolating polynomial for (0, 2), (1, 3), (2, 12) and (5, 147), using Lagrange's interpolation formula. Hence find f(1.5) and f(6).

b. Use Gauss's forward formula to evaluate y_{30} , given that: $y_{21} = 18.4708$, $y_{25} = 17.8144$, $y_{29} = 17.1070$, $y_{33} = 16.3432$ and $y_{37} = 15.5154$.

c. Apply Bessel's formula to find the value of f(27.5) from the table,

_	-FF-J			J(- , t-) c			
	X	25	26	27	28	29	30
	f(x)	4.000	3.846	3.704	3.571	3.448	3.333

UNIT - II

3 a. Compute f'(15) and f''(15) from the following table,

х	15	17	19	21	23	25
f(x)	3.873	4.123	4.359	4.583	4.796	5.0

b. Compute the values of f'(3.1) and f''(3.1) using Stirling's formula from the following table,

X	1	2	3	4	5
f(x)	0	1.4	3.3	5.6	8.1

c. Find the value of x for which y is maximum from the following data,

		. ,			- 7	
х	0	1	2	3	4	5
у	0	0.25	0	2.25	16	56.25

4 a. Compute: $\int_{0}^{1} \frac{dx}{1+x^2}$ by dividing the interval into 8 equal parts, using trapezoidal rule. Hence

obtain the value of π .

b. Compute:
$$\int_{0}^{0.3} \sqrt{1-8x^3} dx$$
 by taking of seven ordinates, using Simpson's $\left(\frac{3}{8}\right)^{th}$ rule.

c. Evaluate $\int_{4}^{5.2} \log_e x dx$ by Weddle's rule taking 7 ordinates.

7

7

UNIT - III

- 5 a. Obtain the Fourier Series expansion of $f(x) = \left(\frac{\pi x}{2}\right)^2$ in $0 \le x \le 2\pi$. 6
 - b. Given that: $f(x) = x + x^2$ for $-\pi < x < \pi$, find the Fourier expansion of f(x). Deduce that 7 $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$
 - c. Find the Fourier series of $f(x) = \begin{cases} 2, & -2 \le x \le 0 \\ x, & 0 \le x \le 2 \end{cases}$ also draw the graph of f(x). 7
- 6 a. Obtain the Complex Fourier series for the function $f(x) = e^x$ in (-l, l). 6
 - b. Find the Fourier half range-cosine series of the function: $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 2(2-x), & 1 < x < 2 \end{cases}$ 7
 - c. Obtain the constant term and the coefficient of the first sine and cosine terms in the Fourier series of f(x) as given in the following table,

х	0	1	2	3	4	5
f(x)	9	18	24	28	26	20

- 7 a. Find the Fourier transform of, $f(x) = \begin{cases} a |x|, & \text{for } |x| \le a \\ 0, & \text{for } |x| > a \end{cases}$ 6
- b. Solve the integral equation, $\int_0^\infty f(\theta) \cos \alpha \theta d\theta = \begin{cases} 1 \alpha, & 0 \le \alpha \le 1 \\ 0, & \alpha > 1 \end{cases}$

Hence evaluate: $\int_0^\infty \frac{\sin^2 t}{t^2} dt$.

- c. Find the cosine transform of, $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$ a. Obtain the Z-transform of 7
- 8 a. Obtain the Z-transform of, i) $(n-1)^2$ ii) $(n+1)^3$, using suitable shifting rules. 6
 - b. Find the inverse Z-transform of, $\frac{4z^2-2z}{z^3-5z^2+8z-4}$. 7
 - c. Solve the difference equation, using Z-transforms, $y_{n+2} 5y_{n+1} + 6y_n = 2$ with $y_0 = 3$, $y_1 = 7$. 7
- 9 a. Form the partial differential equation by eliminating the arbitrary constants in 6 $z = ax^2 + bxy + cy^2.$
 - b. Solve by direct integration. Given $\frac{\partial^2 z}{\partial x \partial y} = x^2 y$ subject to the condition, 7 $z(x,0) = x^2$ and $z(1, y) = \cos y$.
 - ^c· Find the general solution of, $x(z^2 y^2)p + y(x^2 z^2)q = z(y^2 x^2)$ 7
- 10 a. Find the various possible solutions of the two dimensional Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. 10
- b. A tightly stretched string of length l with fixed ends is initially in equilibrium position. It is set 10 to vibrating by giving each point a velocity $v_0 \sin^3 \frac{\pi x}{l}$. Find the displacement y(x,t).