

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belgaum)
 Fourth Semester, B.E. - Make-up Examination; Jan/Feb - 2017
 Engineering Mathematics - IV
 (Common to AU, CV, ME \& IP Branches)

Time: 3 hrs
Max. Marks: 100
Note: i) Answer FIVE full questions, selecting ONE full question from each unit.
ii) Use of statistical tables is allowed.

UNIT - I

1 a. Show that: $f(z)=z^{n}$, where n is positive integer, is analytic and hence find its derivative.
b. Find the analytic function $f(z)$ as a function of z given that $u+v=x^{3}-y^{3}+3 x y(x-y)$.
c. Find the bilinear transformation that transforms the points $i, 1,-1$ onto the points $1,0, \infty$ respectively.
2a. Expand: $f(x)=\frac{z-1}{z+1}$ in Taylor's series about the point $\mathrm{z}=1$.
b. Using Cauchy integral formula, evaluate the integral : $\oint_{\mathrm{c}} \frac{e^{\pi z}}{\left(z^{2}+1\right)^{2}}$, where c is the circle
$|z-i|=1$. $|z-i|=1$.
c. Using Cauchy's Residue theorem, evaluate $\int_{c} \frac{d z}{z^{3}(z-1)}$ where c is the circle : $|z|=2$.

UNIT - II

3 a. Find a root of the equation $x e^{x}=\cos x$ using Regula-Falsi method. Carryout two iterations.
b. Using Newton-Raphson method, find the root that lies near $x=4.5$, of the equation $\tan x=x$. Correct to four decimal places.
c. Find a real root of the equation $x^{3}-x-1=0$, using fixed point iterations method. Accelerate the convergence by Aitken's $\Delta^{2}-\operatorname{method}$ (Carryout three iterations).
4 a. Use Taylor's series method to find y and $x=0.1$ given that $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$ (Considering the terms upto fourth derivative).
b. Using fourth-order Runge-Kutta method, solve $y^{\prime}=x+y^{2}, y(0)=1$ at $x=0.2$ in steps 0.1.
c. Use Milne's predictor-corrector method to find y at $x=0.8$ given

$$
\frac{d y}{d x}=x-y^{2} \text { with } y(0)=0, y(0.2)=0.02, y(0.4)=0.07, y(0.6)=0.17
$$

(Use corrector formula twice).

UNIT - III

5 a . The first four moments about an arbitrary value ' 5 ' of a frequency distribution $\left\{x_{i}, f_{i}\right\} i=1$,
\qquad are $1,4,10$ and
46. Compute the first four moments about the mean
n. Also compute

6 a . A random variable $\mathrm{X}(=\mathrm{x})$ has the following probability function for various value of x.

x	0	1	2	3	4	5	6	7
$P(x)$	0	K	2 K	2 K	3 K	$\mathrm{~K}^{2}$	$2 \mathrm{~K}^{2}$	$7 \mathrm{~K}^{2}+\mathrm{K}$

i) Find K
ii) Evaluate $\mathrm{P}(x<6)$ and $\mathrm{P}(3<x \leq 6)$.
b. The probability that a rivet manufactured by a factory be defective is $\frac{1}{10}$. If 12 rivets are manufactured, what is probability that,
i) Exactly two will be defective
ii) At least two will be defective
iii) None will be defective.
c. The number of accidents in a year by a taxi driver in a city follows Poisson's distribution with mean 3. Out of 1000 taxi drivers, find approximately the number of drivers with,
i) No accidents in a year
ii) More than three accidents in a year.

UNIT - IV

7 a. Results extracts revealed that in a certain school over a period of five years 725 students had passed and 615 students had failed. Test the hypothesis that success and failure are in equal proportions.
b. A random sample of 10 boys had the following I.Qs : 70, 120, 110, 101, 88, 83, 95, 98, 107, 100. Do these data support the assumption of a population mean I.Q of 100 ? Find a reasonable range in which most of the mean I.Q. values of samples of 10 boys lie.
c. A dice is thrown 264 times and the number appearing on the faces (x) follows the following frequency distribution.

x	1	2	3	4	5	6
f	40	32	28	58	24	60

Calculate the value of ψ^{2}.

8 a. Employing Gauss-Siedal method, solve the system of equation :
$10 x+y+z=12,2 x+10 y+z=13,2 x+2 y+10 z=14$. Carryout 3 iterations.
b. Solve the following equation using relaxation method,

$$
10 x-2 y-2 z=6,-x+10 y-2 z=7,-x-y+10 z=8 .
$$

c. Find the dominant Eigen value and the corresponding Eigen vector of the matrix.

$$
A=\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

by power method taking $X^{(0)}=[1,1,1]^{T}$. Perform 5 iterations.

UNIT - V

9 a. With usual notations establish the Euler's equation as $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$.
b. Find the extremal of the functional, $\int_{0}^{\frac{\pi}{2}}\left[\left(y^{\prime}\right)^{2}-y^{2}+4 y \cos x\right] d x, y(0)=y\left(\frac{\pi}{2}\right)=0$.
c. Define a geodesic. Find the geodesic on a surface given that the arc length on the surface is, $s=\int_{x_{1}}^{x_{2}} \sqrt{x\left(1+y^{\prime 2}\right) d x}$.

10 a. Define :
i) Failure density
ii) Failure rate
iii) Mean failure rate.
b. Define the Weibull failure law. The life time of a system ϕ modeled as a Weibull distribution with reliability $R(t)=e^{-\alpha t^{2}}$, where α is a positive constant. It is observed that 15% of the systems that have lasted 90 hours fail before 100 hours. Determine the value of α.
c. Compute the mean time to failure density and mean failure rate for the following data :

Time interval in hours	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
No. of Failure	3	16	26	31	16	8

