P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fourth Semester, B.E. - Semester End Examination; June - 2016
 Engineering Mathematics - IV
 (Common to AU, CV, ME \& IP Branches)

Max. Marks: 100
Time: 3 hrs
Note: i) Answer $\boldsymbol{F I V E}$ full questions, selecting $\boldsymbol{O N E}$ full question from each Unit.
ii) Use of statistical tables is allowed.

UNIT - I

1. a. Show that $f(z)=\sin Z$ is analytic. Hence find its derivative.
b. Find an analytic function $f(z)=u+i v$, given that $u+v=\frac{1}{r^{2}}(\cos 2 \theta-\sin 2 \theta), \mathrm{r} \neq 0$.
c. Discuss the transformation $W=Z^{2}$.

2 a. Evaluate: $\int_{1-i}^{2+i}(2 x+i y+1) d z$ along $x=t+1, \quad y=2 t^{2}-1$.
b. Obtain Laurent's expansion of $f(z)=\frac{z+3}{z\left(z^{2}-z-2\right)}$ in the regions,
(i) $|z|<1$
(ii) $1<|z|<2$
c. Evaluate:
$\int_{C} \frac{d z}{z^{3}(z-1)}$ Where C is the circle $|z|=2$ using Cauchy's residue theorem.

UNIT - II

3 a. Find by Regula-Falsi method the real root of the equation $\log _{e} x-\cos x=0$ that lies in $(1,1.5)$ correct to four places of decimals. Carry out three iterations.
b. Use Newton-Raphson method to find a real root of $x^{4}-3 x^{3}+2 x^{2}+2 x-7=0$ that lies near 2.1 upto four decimal places.
c. Find a real root of the equation $x^{3}-x-1=0$ using fixed point iteration method. Accelerate the convergence by Aitken's Δ^{2} - method (carry out three iterations).
4 a. Find by Taylor's series method the value of the y at $x=0.1$ and $x=0.2$ to five places of decimals from $\frac{d y}{d x}=x^{2} y-1 ; \quad y(0)=1$ (Considering terms upto third degree).

Using Runge-Kutta method of fourth order, solve
$\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, y(0)=1$ at $x=0.2$ and 0.4
c. Find $y(2)$, if $y(x)$ is the solution of $\frac{d y}{d x}=\frac{x+y}{2}$ given that $y(0)=2$,
$y(0.5)=2.636, \quad y(1.0)=3.595$ and $y(1.5)=4.968$ using Milne's predictor and corrector method to four decimal places.

UNIT - III

5 a. Fit a least square geometric curve $y=a x^{b}$ to the following data,

$x:$	1	2	3	4	5
$y:$	0.5	2	4.5	8	12.5

b. Given that the four moments about 2 are 1, 25, -30 and 75 . Find the skewness and kurtosis based on moments.
c. For the regression lines $x=y$ and $4 x-y=3$, find;
(i) Mean values of x and y
(ii) Coefficient of correlation
(iii) Variance in y, given that the variance in x is 1 .

6 a. From the sealed box containing a dozen apples it was found that 3 apples are perished. Obtain the probability distribution of the number of perished apples when 2 apples are drawn at random. Also find the mean and standard deviation of this distribution.
b. In a certain factory turning out razor blades there is a small chance of 0.002 for any blade to be defective. The blades are supplied in packets of 10 . Use Poisson distribution to calculate the approximate number of packets containing,
(i) No defective
(ii) One defective
(iii) Two defective blades in a consignment of 10,000 pockets.
c. The life of a certain type of electric lamps is normally distributed with mean 2040 hours and standard deviation 60 hours. In a consignment of 3000 lamps, how many would be expected to burn for,
i) More than 2150 hours
ii) Less than 1950 hours.

Given $P(0 \leq z \leq 1.83)=0.4664 ; \quad P(0 \leq z \leq 1.33)=0.4082$.

UNIT - IV

7 a. Define :
i) Testing of hypothesis
ii) Standard error
iii) Type -I and Type-II errors.
b. A random sample of 10 boys had the following I.Q's: 70, 120, 110, 101, 88, 83, 95, 98, 107, 100. Do these data support the assumption of a population mean I.Q. of 100 ? Find a reasonable range in which most of the mean I.Q. values of samples of 10 boys lie.
c. Fit a Poisson distribution to the following data and test for its goodness of fit at level of significance 0.05 .

$x:$	0	1	2	3	4
$f:$	419	352	154	56	19

8 a. Solve by Gauss-Seidel iteration method, the
equations $20 x+y-2 z=17 ; 3 x+20 y-z=-18 ; \quad 2 x-3 y+20 z=25$, Carry out three iterations.
b. Solve by Relaxation method,
$5 x+2 y+z=12$
$x+4 y+2 z=15$
$x+2 y+5 z=20$
c. Find the largest Eigen value and the corresponding Eigen vector of the matrix $\left(\begin{array}{ccc}1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5\end{array}\right)$, by power method, taking $[1,0,0]^{T}$ as the initial Eigen vector (Perform
five iterations).

UNIT - V

9 a. Derive Euler's equation in the usual form $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{1}}\right)=0$.
b. Find the Extremel of the functional $\int_{0}^{\pi / 2}\left(y^{\prime 2}-y^{2}+4 y \cos x\right) d x ; \quad y(0)=y(\pi / 2)=0$.
c. Find the path on which a particle in the absence of friction will slide from one point to another point in the shortest time under the action of gravity.
10a. Define :
i) Reliability
ii) Mean time to failure
iii) Failure rate.
b. Define the Weibull failure law. The life time of a system is modeled as a Weibull distribution with reliability $R(t)=\exp \left(-\alpha t^{2}\right)$, where α is a positive constant. It is observed that 15% of the systems that have lasted 90 hours fail before 100 hours. Determine the value of α.
c. Suppose that the life time of a device is exponentially distributed. If the reliability of the device for a 100 hour period of operation is 0.90 , how many hours of operation may be considered to achieve a reliability of 0.95 ?

