P13	MAAC41 Page No 1									
	<i>v.s.n</i> P.E.S. College of Engineering, Mandya - 571 401									
	(An Autonomous Institution affiliated to VTU, Belgaum)									
Fourth Semester, B.E. – Semester End Examination; June - 2016 Engineering Mathematics - IV										
(Common to AU, CV, ME & IP Branches)										
Tin	ne: 3 hrs Max. Marks: 100									
Not	e: i) Answer FIVE full questions, selecting ONE full question from each Unit. ii) Use of statistical tables is allowed.									
	UNIT - I									
1. a.	Show that $f(z) = \sin Z$ is analytic. Hence find its derivative.									
b.	Find an analytic function $f(z) = u + iv$, given that $u + v = \frac{1}{r^2} (\cos 2\theta - \sin 2\theta), r \neq 0$.									
c.	Discuss the transformation $W = Z^2$.									
2 a.	Evaluate: $\int_{1-i}^{2+i} (2x+iy+1) dz$ along $x = t+1$, $y = 2t^2 - 1$.									
b.	Obtain Laurent's expansion of $f(z) = \frac{z+3}{z(z^2-z-2)}$ in the regions,									
	(i) $ z < 1$ (ii) $1 < z < 2$									
с.	Evaluate :									
	$\int_{C} \frac{dz}{z^{3}(z-1)}$ Where C is the circle $ z = 2$ using Cauchy's residue theorem.									
	UNIT - II									
3 a.	Find by Regula-Falsi method the real root of the equation $\log_e x - \cos x = 0$ that lies in									
	(1, 1.5) correct to four places of decimals. Carry out three iterations.									
b.	Use Newton-Raphson method to find a real root of $x^4 - 3x^3 + 2x^2 + 2x - 7 = 0$ that lies near									
	2.1 upto four decimal places.									
c.	Find a real root of the equation $x^3 - x - 1 = 0$ using fixed point iteration method. Accelerate									

- ıg p c. 7 the convergence by Aitken's Δ^2 – method (carry out three iterations).
- Find by Taylor's series method the value of the y at x = 0.1 and x = 0.2 to five places of 4 a. decimals from $\frac{dy}{dx} = x^2 y - 1$; y(0) = 1 (Considering terms upto third degree). 6
 - Using Runge-Kutta method of fourth order, solve b.

$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}, \ y(0) = 1 \ at \ x = 0.2 \ and \ 0.4$$

P13MAAC41

Page No... 2

c. Find y(2), if y(x) is the solution of $\frac{dy}{dx} = \frac{x+y}{2}$ given that y(0) = 2,

y(0.5) = 2.636, y(1.0) = 3.595 and y(1.5) = 4.968 using Milne's predictor and corrector method to four decimal places.

UNIT - III

5 a. Fit a least square geometric curve $y = ax^{b}$ to the following data,

<i>x</i> :	1	2	3	4	5
<i>y</i> :	0.5	2	4.5	8	12.5

- b. Given that the four moments about 2 are 1, 25, -30 and 75. Find the skewness and kurtosis based on moments.
- c. For the regression lines x = y and 4x y = 3, find;

(i) Mean values of *x* and *y*

(ii) Coefficient of correlation

- (iii) Variance in y, given that the variance in x is 1.
- 6 a. From the sealed box containing a dozen apples it was found that 3 apples are perished.
 Obtain the probability distribution of the number of perished apples when 2 apples are
 6 drawn at random. Also find the mean and standard deviation of this distribution.
 - b. In a certain factory turning out razor blades there is a small chance of 0.002 for any blade to be defective. The blades are supplied in packets of 10. Use Poisson distribution to calculate the approximate number of packets containing,
 - (i) No defective (ii) One defective

(iii) Two defective blades in a consignment of 10,000 pockets.

c. The life of a certain type of electric lamps is normally distributed with mean 2040 hours and standard deviation 60 hours. In a consignment of 3000 lamps, how many would be expected to burn for,

i) More than 2150 hours ii) Less than 1950 hours.

Given $P(0 \le z \le 1.83) = 0.4664; P(0 \le z \le 1.33) = 0.4082.$

UNIT - IV

- 7 a. Define :
 - i) Testing of hypothesis ii) Standard error iii) Type -I and Type-II errors.
 - b. A random sample of 10 boys had the following I.Q's: 70, 120, 110, 101, 88, 83, 95, 98, 107, 100. Do these data support the assumption of a population mean I.Q. of 100? Find a 7 reasonable range in which most of the mean I.Q. values of samples of 10 boys lie.

7

6

7

7

7

6

7

Page No... 3

c. Fit a Poisson distribution to the following data and test for its goodness of fit at level of significance 0.05.

<i>x</i> :	0	1	2	3	4
f:	419	352	154	56	19

8 a. Solve by Gauss-Seidel iteration method, the

equations 20x + y - 2z = 17; 3x + 20y - z = -18; 2x - 3y + 20z = 25, Carry out three 6 iterations.

b. Solve by Relaxation method,

$$5x + 2y + z = 12 x + 4y + 2z = 15 x + 2y + 5z = 20$$
7

c. Find the largest Eigen value and the corresponding Eigen vector of the matrix $\begin{pmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{pmatrix}$, by power method, taking $\begin{bmatrix} 1,0,0 \end{bmatrix}^T$ as the initial Eigen vector (Perform 7

five iterations).

UNIT - V

- 9 a. Derive Euler's equation in the usual form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y^1} \right) = 0$. 6
 - b. Find the Extremel of the functional $\int_{0}^{\pi/2} \left({y'}^{2} y^{2} + 4y \cos x \right) dx; \quad y(0) = y\left(\frac{\pi}{2} \right) = 0.$ 7
 - c. Find the path on which a particle in the absence of friction will slide from one point to another point in the shortest time under the action of gravity. 7

10a. Define :

i) Reliability ii) Mean time to failure iii) Failure rate.

- b. Define the Weibull failure law. The life time of a system is modeled as a Weibull distribution with reliability $R(t) = \exp(-\alpha t^2)$, where α is a positive constant. It is observed that 15% of the systems that have lasted 90 hours fail before 100 hours. Determine the value of α .
- c. Suppose that the life time of a device is exponentially distributed. If the reliability of the device for a 100 hour period of operation is 0.90, how many hours of operation may be considered to achieve a reliability of 0.95?

P13MAAC41

7

6

7

7