P1,	P13MAAC41 Page No 1				
	U.S.N				
- Ti	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fourth Semester, B.E. – Semester End Examination; June / July -2015 Engineering Mathematics – IV (Common to AU, CV, ME & IP Branches) me: 3 hrs Max. Marks: 100				
No	 <i>te</i>: <i>i</i>) Answer <i>FIVE</i> full questions, selecting <i>ONE</i> full question from each Unit. <i>ii</i>) Use of statistical tables is allowed. 				
1. a.		-			
	Show that $f(z) = z + e^{z}$ is an analytic function. Hence find its derivative.	6			
b.	Find an analytic function $f(z) = u + iv$, given that $u = x \sin x \cosh y - y \cos x \sinh y$.	7			
c.	Find the bilinear transformation which maps the points $z = 0, -i, 2i$ into	7			
	$\omega = 5i, \infty, -\frac{i}{3}$ respectively. What are the invariant points in this transformation?	,			
2 a.	Evaluate: $\int_{C} z^2 dz$ along the curve C made up of two line segments, one from $z = 0$ to $z = 3$	6			
	and another from $z = 3$ to $z = 3+i$.				
b.	Expand $f(z) = \frac{z}{(z-1)(z-3)}$ as a Laurent's series valid for i) $1 < z < 3$ ii) $ z-1 < 2$	7			
c.	Use Cauchy's residue theorem to evaluate,				
	$\int_{c} \frac{e^{z} dz}{z^{2} + 4}$ where C is the circle $ z - i = 2$	7			
	UNIT - II				
3 a.	Apply regula-falsi method to find a real root of the equation $\tan x + \tanh x = 0$ that lies between 2 and 3. Carryout three iterations.	6			
b.	Find the smallest root of the equation, $x^3 - 9x^2 + 26x - 24 = 0$, using Ramanujan's method.	7			
c.	Apply Newton Raphson method to find a real root of the equation $x \log_{10} x = 1.2$ correct to	7			
	four decimal places.				
4 a.	Use Runge – Kutta method of order IV to find y(1.1), given that $\frac{dy}{dx} = xy^{\frac{1}{3}}, y(1) = 1$	6			
	taking $h = 0.1$				
b.	Apply modified Euler's method to find y at $x = 0.2$, given $\frac{dy}{dx} = 3x + \frac{y}{2}$, $y(0) = 1$	7			
	<i>taking</i> $h = 0.1$ Perform three iterations at each stage.				

Given $\frac{dy}{dx} = x - y^2$ and the data y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762c. 7 compute y at x = 0.8 by using Adam-Bashforth predictor-corrector method.

Contd .. 2

P13MAAC41

Page No... 2

UNIT – III

- 5 a. The first four moments about an arbitrary value "4" of a frequency distribution are -1.5, 17,
 -30 and 108. Find the skewness and kurtoses based on moments.
 - b. Fit a curve of the form $y = ab^x$ for the data

X:	1	2	3	4	5	6	7	7
Y:	87	97	113	129	202	195	193	

And hence find the estimation of *y* when x = 8.

- c. If θ is the angle between the lines of regression, show that $\tan \theta = \frac{\sigma x \sigma y}{\sigma x^2 + \sigma y^2} \left(\frac{1 - r^2}{r}\right)$. Explain the significance when $r = \pm 1$.
- 6 a. A random variable X (= x) has the following probability function for various values of x:

X:	0	1	2	3	4	5	6	7
Y:	0	Κ	2K	2K	3K	K^2	$2K^2$	$7K^2 + K$

Find

i) the value of K

ii) P(x < 6)

- iii) $P(3 < x \le 6)$
- b. The number of accidents in a year to taxi drivers in a city follows a Poisson's distribution with mean 3. Out of 1000 taxi drivers find approximately the number of drivers with 7 (i) no accidents (ii) More than 3 accidents in a year.
- c. The life of an electric bulb is a normal variable with mean life of 2040 hours and standard deviation of 60 hours. Find the probability that a randomly selected bulb will burn for
 i) more than 2150 hours ii) less than 1950 hours.

Given $\phi(1.83) = 0.4664$ and $\phi(1.5) = 0.4332$

$\mathbf{UNIT} - \mathbf{IV}$

7 a. Define

i) Standard error

ii) Type – I and Type – II errors.

- b. A die is tossed 960 times and it falls with 5 upwards 184 times. Is the die biased at 5% level of significance?
- c. Ten individuals are chosen at random from a population and their heights in inches are found to be 63, 63, 66, 67, 68, 69, 70, 70, 71 and 71. Test the hypothesis that mean height of 7 the universe is 66 inches. (Use $t_{0.05}(9) = 2.262$).

6

6

7

6

7

P13MAAC41

Page No... 3

6

- 8 a. Solve the system of equations 6x+15y+2z=72, 27x+6y-z=85, x+y+54z=110 by Gauss - Saidal method to obtain a numerical solution correct to three decimal places of 6 accuracy. [Take $(x^{(0)}, y^{(0)}, z^{(0)} = (0, 0, 0)]$
 - b. Solve by Relaxation method

$$10x - 2y - 2z = 6-x + 10y - 2z = 7-x - y + 10z = 8$$
7

Use Rayleigh's power method, find numerically the largest Eigen value and the c. corresponding Eigen vector of the matrix $\begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$, taking initial Eigen vector as 7

_

 $[1, 0, 0]^{\mathrm{T}}$

UNIT - V

With usual notation establish the Euler's equation as, $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y^1} \right) = 0$ 9 a. 6

b. Solve the variational problem:
$$\delta \int_{0}^{\frac{\pi}{2}} (y^2 - (y')^2) dx; y(0) = 0, y(\frac{\pi}{2}) = 2.$$
 7

- Define a geodesic. Find the geodesic on the surface of a plane. 7 c.
- 10 a. Explain; i) system reliability ii) mean time to failure.
 - b. Define the normal failure law. Suppose that the life time of a system is normally distributed with standard deviation equal to 10 hours. If the system has a reliability of 0.99 for an 7 operation period of 100 hours, what should its expected life be?
 - 7 Define the Weibull failure law. Find the mean time to failure for a Weibull distribution. с.

* * * * *