P	13MAES41					Рс	ıge I	Vo	1
			N #		.1		FF4		
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum)Fourth Semester, B.E Semester End Examination; June / July -2015 Engineering Mathematics - IV (Common to EE, EC, CS & E, IS & E Branches)Time: 3 hrsMax. Marks: 100									
N	ote : i) Answer FIVE full questions, selecting ONE full o ii) Use of statistical tables is allowed. UNIT – I	questic	n fro	m ea	ch U	I nit .			
1. a.	Use Newton – Raphson method to find a real root of the	he equ	ation	$x \log$	$g_{10} x$	=1.	2 nea	$\mathbf{r} x =$	2.5
	(Carry out 3 iterations)								
b.	Using Regula – falsi method, Find the fourth root of 32	(carry	out f	our i	itera	tion	s)		
c.	Find a real root of the equation $x^3 - x - 1 = 0$ in the intermethod and accelerate it by Aitken's Δ^2 – Process.	ternal	(1, 2)	usir	ng fi	xed	poin	t itera	tion
2 a.	Use Taylor's series method to obtain a power series	in x u	pto f	ourtl	h de	gree	tern	ns for	the
	differential equation $\frac{dy}{dx} - 2y = 3e^x$, $y(0) = 0$ Hence fir	nd y (0.	1) an	d y(().2)				
b.	Using modified Euler's method find y at $x = 1.2$ and y	x = 1.4	give	n $\frac{d}{d}$	$\frac{y}{x} = 1$	$1 + \frac{y}{x}$	with	1 y(1)	= 2
	taking $h = 0.2$ (perform 3 iterations at each step).								
c.	Apply Milne's method to compute $y(1.4)$ given that $\frac{dy}{dx}$	$x^{2} = x^{2} + $	$\frac{y}{2}$ w	ith y	(1) =	= 2,			
	y(1.1) = 2.2156, y(1.2) = 2.4649, y(1.3) = 2.7514 (us	e corre	ctor f	form	ula t	wice	e)		
	UNIT – II								
	Show that $W = Z^n$ is analytic and hence find its derivation								
b.	Determine the analytic function $f(z)$. Whose real part	t is e^{2x}	(x c c	ps 2y	- y :	sin 2	y)		
c.	Discuss the transformation $w = z + \frac{1}{z}$, $z \neq 0$								
4 a.	State Cauchy's integral formula and use it to evaluation	$\int_{c} \frac{1}{(z+z)} dz$	$\frac{e^{2z}}{1)(z}$	-2)	dz.				
	where c represents the circle $ z = 3$.								
b.	Expand $f(z) = \frac{2z+3}{(z+1)(z-2)}$ as a Laurent's series value	d for i)	z <	1 i	i) 1	< 2	2 < 2	2	
c.	For the function $f(z) = \frac{z+4}{(z-1)^2 (z-2)^3}$. Find the pole	s and r	esidu	es.					

Contd...2

P13MAES41

UNIT - III

- 5 a. The first four moments of a frequency distribution about an arbitrary value are -1.5, 17, -30 and 108. Find the Skewness and Kurtosis based on moments.
 - b. Fit a parabola of second degree $y=ax^2+bx+c$ in the least square sense for the data.

x	0	1	2	3	4
у	1	1.8	1.3	2.5	2.3

c. Find the correlation coefficient and the equation of the lines of regression for the following values of *x* and *y*.

x	1	2	3	4	5
у	2	5	3	8	7

6. a. A random variable (X = x) has the following probability distribution for various values of x.

x	0	1	2	3	4	5	6	7	6
p(x)	0	k	2k	2k	3k	k ²	$2k^2$	$7k^2+k$	

i) Find k ii) Evaluate $p(x \ge 6)$ and $p(3 < x \le 6)$

b. The probability of germination of a seed in a bucket of seeds is found to be 0.7 if 10 seeds are taken for experimenting on germination in a laboratory.

Find the probability that (i) exactly eight seeds germinate ii) at least eight seeds germinate.

c. The marks of 1000 students in an examination follows a normal distribution with mean 70 and S.D. 5. Find the number of students whose marks will be (i) less than 65 (ii) more than 7 75 (iii) between 65 and 75, Given $\phi(1) = 0.3413$.

-				
XY	-2	-1	4	5
1	0.1	0.2	0	0.3
2	0.2	0.1	0.1	0

UNIT - IV

Find (i) Marginal probability distribution of X and Y (ii) E(X).E(Y) and E(XY)

7 a. The joint probability distribution table of two random variable x and y as follows:

b. Define the terms (i) Probability vector (ii) Unique fixed probability vector (iii) Stochastic and regular stochastic matrix. Further, Find the unique fixed probability vector of the regular stochastic matrix.

$$\begin{bmatrix} 3/_4 & 1/_4 \\ 1/_2 & 1/_2 \end{bmatrix}$$

7

Contd...3

7

6

7

7

6

P13MAES41

Page No... 3

c. Three boys A, B, C are throwing ball to each other. A always throws the ball to B and B always throws to C. C is just as likely to throw to B as to A. If C was the first person to throw the ball. Find the probabilities that after three throws (i) A has the ball (ii) B has the ball (iii) C has the ball.

8 a. Given the data of a stochastic process defined on a finite sample space with three sample $\frac{1}{2}$

points
$$X(t,\lambda_1) = 3$$
, $X(t,\lambda_2) = 3\cos t X(t,\lambda_3) = 3\sin t$ where $P(\lambda_1) = P(\lambda_2) = P(\lambda_3) = \frac{1}{3}$ 6

represents the probability of the assignments. Compute $\mu(t)$ and $R(t_1, t_2)$.

- b. Define; (i) transient state and (ii) absorbing state of a Markov Chain. A student's study habits are as follows. If he studies one night, he is 70% sure not to study the next night on the other hand if he does not study one night, he is 60% sure not to study the next night. In the long run how often does he study?
- c. Define the M / M /I queuing system. In a bus stand there is a single counter for issuing tickets.
 On an average 12 commuters arrive every 10 minutes. The counter clerk is able to issue 8 tickets in a span of 5 minutes. Find i) Average number of commuters in the queue and ii) Average waiting time in the queue.

UNIT - V

9 a. Define (i) Vector space and (ii) Subspace with suitable examples. 6 b. i) Define basis of a vector space and ii) Define linearly independent and dependent vectors with suitable examples. c. Define Rank and Nullify of a linear transformation. Find the rack and nullity of the linear 7

- transformation T : V₃() \rightarrow V₃() by T (x. y. z) = (x + z, x + y + 2z, 2x + y + 3z)
- 10 a. Solve: 20x + y 2z = 17, 3x + 20y z = -18 2x 3y + 20z = 25. using Gauss Seidel method (carry out 3 iterations) 6

b. Solve:
$$5x+2y+z=12$$
, $x+4y+2z=15$, $x+2y+5z=20$ using Relaxation method.

c. Find the largest Eigen value and the corresponding Eigen vector of the matrix,

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
 7

Using power method taking the initial Eigen vector as $[1, 0, 0]^{T}$ (perform six iterations).

* * * * *

7

7

7