U.S.N					
0.8.1					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fourth Semester, B.E. - Make-up Examination; Jan/Feb - 2017 Engineering Mathematics - IV

(Common to EE, EC, CS & E, IS & E Branches)

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- 1 a. Find the positive root of $x^4 x = 10$ correct to three decimal places using Newtons-Raphson Method (Carry out 3 iterations).
 - b. Find the root of the equation $x \log_{10} x = 1.2$, using the Regula-Falsi method. Correct four decimal places (carry out 4 iterations).
- c. Find the smallest root of the equation $x^3 6x^2 + 11x 6 = 0$ using Ramanujan's method.
- 2 a. Employ Taylor's method to obtain approximate value of y at x = 0.2 for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0.
- b. Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2 and 0.4.
- c. If $\frac{dy}{dx} = 2e^x y$, y(0.1) = 2.010, y(0.2) = 2.040, y(0.3) = 2.090 find, y(0.4) correct to four decimal places by using Adams-Bashforth method.

UNIT-II

- 3 a. Show that $f(z) = \cosh z$ is analytic and hence find f'(z).
 - b. Find the analytic function f'(z) whose imaginary part is $e^x(x \sin y + y \cos y)$.
 - c. Discuss the transformation $w = z + \frac{1}{z}, z \neq 0$.
- 4 a. Evaluate: $\int_{c} z^{2} dz$ along the straight line from z = 0 to z = 3 + i.
 - b. Expand: $f(z) = \frac{1}{(z-1)(2-z)}$ as a Laurent's series valid for,
 - i) |z| = 1 ii) |z| < 2 iii) |z| > 2.
 - c. Evaluate: $\int_{c}^{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)^{2}(z-2)} dz$ where c: |z| = 3.

6

7

6

UNIT - III

- 5 a. The first four moments about the working mean 28.5 of a distribution are 0.204, 7.144, 42.409 and 454.98. Calculate the β_1 and β_2 .

6

7

6

7

7

6

b. Fit a curve of form $y = ab^x$ in the least square sense for the following data:

- c. Show that, if θ is the angle between the lines of regression, then $\tan \theta = \frac{\sigma_x \sigma_y}{\sigma_x^2 \sigma_y^2} \left(\frac{1-r^2}{r}\right)$.
- 6 a. The p.d.f. of a variate x is given by the following table :

$$x$$
: 0 1 2 3 4 5 6 $p(x)$ k 3k 5k 7k 9k 11k 13k

- i) Find K ii) Evaluate $p(x \ge 5)$ iii) $p(3 < x \le 6)$.
- b. The probability that a person aged 60 years will live upto 70 years is 0.65. What is the probability that out of 10 persons aged 60 at least 7 of them will live upto 70?
- c. The marks of 1000 students in an examination follows a normal distribution with mean 70 and standard deviation 5. Find the number of students whose marks will be,
 - i) Less than 65 ii) More than 75 iii) Between 65 and 75. Given $\phi(1) = 0.3413$.

UNIT - IV

7 a. The joint distribution of two random variables X and Y is as follows:

X	-4	2	7
1	1/8	1/4	1/8
5	1/4	1/8	1/8

Find:

- (i) Marginal probability distribution of X and Y ii) E(X) and E(Y) iii) E(XY).
- b. Find the unique fixed probability vector for the regular stochastic matrix.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 7

c. The joint density function of two continuous random variables x and y is given by,

$$f(x,y) = \begin{cases} Kxy & : 0 \le x \le 4, \quad 1 < y < 5 \\ 0 & \text{otherwise} \end{cases}$$

Find: (i) The value of K ii) E(X) iii) E(Y) iv) E(XY).

- 8 a. Define:
 - i) Auto correlation
- ii) Auto covariance
- iii) Correlation coefficient.

6

b. Three boys A, B, C are throwing ball to each other. A always throws the ball to B and B always throws the ball to C. C is just as likely to throw the ball to B as to A. If C was the first person to throw the ball. Find the probability that after three throws,

7

- i) A has the ball
- ii) B has the ball
- iii) C has the ball.
- c. Define the M/M/1 Queuing system. In a bus stand there is a single counter for issuing tickets. On an average 12 commuters arrive every 10 minutes. The counter clerk is able to issue 8 tickets in a span of 5 minutes. Find:

7

- i) Average number of commuters in the queue
- ii) Average waiting time in the queue.

UNIT-V

9 a. Define subspace with suitable example.

6

b. Define linearly dependent and independent vectors. Prove that $u_1(1, 0, 0)$, $u_2(0, 1, 0)$, $u_3(0, 0, 1)$ are linearly independent.

7

- c. Define linear transformation. Find the rank and nullity of the linear transformation,
 - $T: \mathbb{R}^4 \to \mathbb{R}^3$ by T(x, y, z, t) = (x y + z + t, 2x 2y + 3z + 4t, 3x 3y + 4z + 5t).

7

- 10 a. Solve by Gauss-Seidel iteration method the equations,
 - 20x + y 2z = 17; 3x + 20y z = -18; 2x 3y + 20z = 25 (Carry out 3 iterations).

6

b. Solve the system of equations: 12x+y+z=31; 2x+8y-z=24; 3x+4y+10z=58 using Relaxation method.

7

c. Determine the largest Eigen value and the corresponding Eigen vector of the matrix using power method taking initial Eigen vector $[1, 0, 0]^T$ (perform 6 iteration).

 $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$

7