P13MAES41	Page No 1					
U.S	.N					
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fourth Semester, B.E. – Make-up Examination, July/Aug 2015 Engineering Mathematics - IV (Common to EE, EC, CS&E, IS&E Branches) Time: 3 hrs Max. Marks: 100						
<i>Note</i> : Answer any FIVE full questions, selecting ONE						
UNIT - I						
1. a. Using the method of false position, find a real roo between 2 and 2.5. (Correct to 3 decimal places).	ot of the equation $x^2 - 2x - 5 = 0$ that lies 6					
b. Find a positive approximate real root of the equation	7					
method. Carryout the iterations upto four decimal pl	·					
c. Find the smallest root of the equation $f(x) = x^3 - 9$. 2 a. Solve the differential equation $\frac{dy}{dx} = -xy^2$ given						
method, at the points $x = 0.1$ and $x = 0.2$. Take t iterations at each step.	he step – size $h = 0.1$ and carry out two 6					
b. Using the fourth order Range – Kutta method, sol	we the equation $\frac{dy}{dx} = \frac{1}{x+y}$ at the point 7					
x = 0.5, given $y(0.4) = 1$. Take step – length h = 0.1.						
c. Apply Adams – Bash forth method to solve the equ the data, with $y(0) = 1$, $y(0.25) = 1.0026$, $y(0.5) = 1$.0206, $y(0.75) = 1.0679$.					
UNIT – I 3. 2. Show that $f(x) = 7^n$ is an abrian Hanne find its dark						
3 a. Show that $f(z) = Z^n$ is analytic. Hence find its derive						
b. Find the analytic function $f(z)$, given $u = e^{-x} \{ (x^2 + z^2) \}$	$-y^2 \Big) \cos y + 2xy \sin y \Big\} $ 7					
c. Discuss the transformation $w = z^2$	7					
4 a. Evaluate $\int_{c} z^2 dz$, where c is the curve OAB consisting	g of two line segments :					
i) OA from the point $z = 0$ to the point $z = 2$ and ii) AB from the point $z = 2$ to the point $z = 2 + i$	6					
ii) AB from the point $z = 2$ to the point $z = 2 + i$.						
b. Expand $f(z) = \frac{z}{(z-1)(z-3)}$ as a Laurent's series in	the regions i) $1 < z < 3$ and ii) $ z > 3$ 7					

Contd...2

P13MAES41

- c. By using the Cauchy residue theorem, evaluate $\int_{c} \frac{2z^2 + 1}{(z+1)^2(z-2)} dz$. Where C is the circle
 - |z + 1| = 1

UNIT - III

- 5 a. The first four moments about the working mean 28.5 of a distribution are 0.294, 7.144, 42.409 and 454.98. Calculate the moments about the mean. Also evaluate $\beta_1 \& \beta_2$.
 - b. Fit a parabola $y = a + bx + cx^2$ by the method of least square for the following data:

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0
у	1.1	1.3	1.6	2.0	2.7	3.4	4.1

c. Obtain the lines of regressions and hence find the coefficient of correlation for the following

data:

x	1	3	4	2	5	8	9	10	13	15
У	8	6	10	8	12	16	16	10	32	32

6. a. Find the value of k such that the following distribution represents a finite probability distribution.

x	0	1	2	3	4	5	6
p(x)	k	3k	5k	7k	9k	11k	13k

6

7

7

6

7

6

7

7

Also find p(x > 4) and $p(3 < x \le 6)$.

- b. The probability of a man aged 60 will live to be 70 is 0.65. What is the probability that act of 10 men, now aged 60, i) exactly 9 will live to be 70, ii) at most 9 will live to be 70 iii) at least 7 will live to be 70 ?
- c. In a normal distribution, 7% are under 35 and 89% are under 63. Find the mean and the standard deviation given that A(1.23) = 0.39 and A(1.48) = 0.43 in the usual notation.

UNIT - IV

7 a. Find a constant k so that

$$f(x, y) = \begin{cases} k(x+1)e^{-y}, & 0 < x < 1, y > 0 \\ 0, & else \ where \end{cases}$$

Is a joint probability density function. Are x and y independent?

b. The joint distribution of two random variable X and Y as follows:

XY	-2	-1	4	5
1	0.1	0.2	0	0.3
2	0.2	0.1	0.1	0

Find; (i) Marginal probability distribution of X and Y (ii) Cov (X, Y)

7

P13MAES41

6

7

7

c. Define the regular stochastic matrix. Find the unique fixed probability vector of the regular stochastic matrix.

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}$$

$$7$$

8 a. Define; i) Absorbing state ii) Transient state iii) Recurrent state of a Markov chain.

- b. Each year a man trades his car for a new car in 3 brands. If he has a 'standard' he trades it for 'Zen'. If he has a 'Zen' he trades it for a 'Esteem'. If he has a 'Esteem' he is just as likely to trade it for a new Esteem or for a Zen or a standard one. In 1996 he bought his first car which was Esteem. Find the probability that he has i) 1998 Esteem ii) 1998 standard iii) 1999 Zen.
- A coin is tossed three times. Let X denote 0 or 1 according as a tail or head occurs on the first toss. Let Y denote the total number of tails which occur. Determine;

i) The marginal distributions of X and Y

ii) Joint distribution of X and Y. Also find the expected values of X + Y

UNIT - V

9 a.	Define; (i) Vector space and (ii) Subspace with suitable examples.	6
b.	Define basis of a vector space. Is the set $\{(1, 2, 1), (2, 1, 0), (1, -1, 2)\}$ a basis for the vector	7
	space R ³ ?	
c.	Define a linear transformation. Find the rank and nullity of the transformation	7
	$T: V_2(R) \rightarrow V_2(R)$ defined by $T(x_1, x_2) = (x_1 + x_2, x_1)$	/
10 a.	Solve the following system of equations by Gauss – Seidel method	
	20x + y - 2z = 17, $3x + 20y - z = -18$ $2x - 3y + 20z = 25$.	6
	(Carryout three iterations.)	
b.	Solve by the Relaxation method, the system of equations	7
	5x + 2y + z = 12, $x + 4y + 2z = 15$, $x + 2y + 5z = 20$.	7
c.	Find the dominant Eigen value and the corresponding Eigen vector of the matrix.	

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
7

By power method taking $(1, 1, 1)^{T}$ as the initial Eigen vector.

* * * *