# P.E.S. College of Engineering, Mandya - 571401 <br> (An Autonomous Institution affiliated to VTU, Belgaum) <br> Second Semester, B.E. - Civil Engineering <br> Semester End Examination; June - 2016 <br> Engineering Mechanics 

Time: 3 hrs
Max. Marks: 100
Note: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Missing data may suitably be assumed.

UNIT - I
1 a. State and prove Varignon's theorem of moments.
b. Determine the magnitude, direction and the point of application of the smallest force applied to the rectangular plate A, B, C, D as shown in Fig. Q(1b), which produces a clockwise moment of $50 \mathrm{~N}-\mathrm{m}$ about the hinge E .
c. If the sack at A has a weight of 20 N . Determine the weight of the sack at B and the force in each cord needed to hold the system in equilibrium position as shown in Fig. Q(1C).
2 a. With sketches, explain different types of supports.
b. With sketches, explain the types of loading on beams.
c. Determine the reactions at the supports for the beam shown in Fig. Q2(c).

UNIT - II
3 a. Distinguish between centroid and centre of gravity.
b. Locate the centroid of a semicircle with respect to horizontal diameter by the method of Integration.
c. Locate the centroid of the lamina shown in Fig. Q3(c) with respect to point O.

4 a . Locate the centroid of quadrant of circular lamina from first principle.
b. Determine the centroid of lamina shown in Fig Q 4(b).

## UNIT - III

5 a. State and prove parallel axis theorem.
b. Determine the moment of inertia of triangle of base width ' $b$ ' and height ' $h$ ' about the base.
c. Determine the moment of inertia and radius of gyration of the area shown in Fig. Q5(c) about the base AB and centroid axis parallel to AB .
6 a. In a tabular form, and with sketches, indicate the formulae used for Calculating $\mathrm{I}_{\mathrm{XX}}$ and $\mathrm{I}_{\mathrm{YY}}$ for various geometrical shapes to determine moment of Inertia.
b. Determine the minimum radius of gyration of the section among $x-x$ and $y-y$ centroidal axis of the composite section shown in Fig. Q6(b).

## UNIT - IV

7 a. Define coefficient of the friction. Show that the coefficient of friction is tangent of the angle
of friction.
b. Explain : i) Angle of friction ii) Angle of response iii) Cone of friction
c. A uniform bar AB 5 m long weighing 280 N is hinged at B, rest upon 400 N block at A as shown in Fig Q7(c). If coefficient of friction is 0.4 for all contact surfaces, find the horizontal force P required to move the 400 N block.

8 a . What is meant by angle of repose? Show that angle of repose in equal to angle to friction.
b. A small block of weight 1000 N is paced on a $30^{\circ}$ incline with co-efficient of friction $=0.25$ as shown in Fig. Q 8(b) Find the horizontal force P required to the applied for :
i) Impending motion down the plane ii) Impending motion up the plane.

UNIT - V
9 a. What is a projectile? Define the following terms:
i) Angle of projection ii) Horizontal range iii) Vertical height and iv) Time of flight.
b. A cricket ball thrown from a height of 1.8 m above ground level at an angle of $30^{\circ}$ with horizontal with velocity of $12 \mathrm{~m} / \mathrm{s}$ and is caught by fielder at a height of 0.6 m above the ground. Determine the distance between the two players.
10a. State and explain D' Alembert's principle.
b. Explain different types of impacts of two bodies.
c. Derive the three equations of motion with internal notations.


Contd... 3


Fig. Q $3(c)$


Fig. Q 4 (b)
All dimensions in mm


Fig. a 6 (b)


Fig. Q 7 (c)

