

| <b>P1</b> :                                                                                                                                                                                                                     | 5CV23 Page No 1                                                                                                                                                   |    |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
|                                                                                                                                                                                                                                 |                                                                                                                                                                   |    |  |  |
| <b>P.E.S. College of Engineering, Mandya - 571 401</b><br>(An Autonomous Institution affiliated to VTU, Belgaum)<br>Second Semester, B.E. – Civil Engineering<br>Semester End Examination; June - 2016<br>Engineering Mechanics |                                                                                                                                                                   |    |  |  |
| Time: 3 hrsMax. Marks: 100                                                                                                                                                                                                      |                                                                                                                                                                   |    |  |  |
| No                                                                                                                                                                                                                              | <i>te</i> : <i>i</i> ) Answer <b>FIVE</b> full questions, selecting <b>ONE</b> full question from each unit.<br><i>ii</i> ) Missing data may suitably be assumed. |    |  |  |
| UNIT - I                                                                                                                                                                                                                        |                                                                                                                                                                   |    |  |  |
| 1 a.                                                                                                                                                                                                                            | State and prove Varignon's theorem of moments.                                                                                                                    | 6  |  |  |
| b.                                                                                                                                                                                                                              | Determine the magnitude, direction and the point of application of the smallest force applied                                                                     |    |  |  |
|                                                                                                                                                                                                                                 | to the rectangular plate A, B, C, D as shown in Fig. Q(1b), which produces a clockwise                                                                            | 7  |  |  |
|                                                                                                                                                                                                                                 | moment of 50 N-m about the hinge E.                                                                                                                               |    |  |  |
| c.                                                                                                                                                                                                                              | If the sack at A has a weight of 20 N. Determine the weight of the sack at B and the force in                                                                     | 7  |  |  |
|                                                                                                                                                                                                                                 | each cord needed to hold the system in equilibrium position as shown in Fig. Q(1C).                                                                               | /  |  |  |
| 2 a.                                                                                                                                                                                                                            | With sketches, explain different types of supports.                                                                                                               | 6  |  |  |
| b.                                                                                                                                                                                                                              | With sketches, explain the types of loading on beams.                                                                                                             | 6  |  |  |
| c.                                                                                                                                                                                                                              | Determine the reactions at the supports for the beam shown in Fig. Q2(c).                                                                                         | 8  |  |  |
| UNIT - II                                                                                                                                                                                                                       |                                                                                                                                                                   |    |  |  |
| 3 a.                                                                                                                                                                                                                            | Distinguish between centroid and centre of gravity.                                                                                                               | 4  |  |  |
| b.                                                                                                                                                                                                                              | Locate the centroid of a semicircle with respect to horizontal diameter by the method of Integration.                                                             | 6  |  |  |
| c.                                                                                                                                                                                                                              | Locate the centroid of the lamina shown in Fig. Q3(c) with respect to point O.                                                                                    | 10 |  |  |
| 4 a.                                                                                                                                                                                                                            | Locate the centroid of quadrant of circular lamina from first principle.                                                                                          | 6  |  |  |
|                                                                                                                                                                                                                                 | Determine the centroid of lamina shown in Fig Q 4(b).                                                                                                             | 14 |  |  |
| UNIT - III                                                                                                                                                                                                                      |                                                                                                                                                                   |    |  |  |
| 5 a.                                                                                                                                                                                                                            | State and prove parallel axis theorem.                                                                                                                            | 6  |  |  |
| b.                                                                                                                                                                                                                              | Determine the moment of inertia of triangle of base width 'b' and height 'h' about the base.                                                                      | 6  |  |  |
|                                                                                                                                                                                                                                 | Determine the moment of inertia and radius of gyration of the area shown in Fig. Q5(c) about                                                                      |    |  |  |
|                                                                                                                                                                                                                                 | the base AB and centroid axis parallel to AB.                                                                                                                     | 8  |  |  |
| 6 a.                                                                                                                                                                                                                            | In a tabular form, and with sketches, indicate the formulae used for Calculating $I_{XX}$ and $I_{YY}$                                                            |    |  |  |
|                                                                                                                                                                                                                                 | for various geometrical shapes to determine moment of Inertia.                                                                                                    | 6  |  |  |
| b.                                                                                                                                                                                                                              | Determine the minimum radius of gyration of the section among $x - x$ and $y - y$ centroidal axis of the composite section shown in Fig. Q6(b).                   | 14 |  |  |

## UNIT - IV

| 7 a. | Define coefficient of the friction. Show that the coefficient of friction is tangent of the angle     | 4  |
|------|-------------------------------------------------------------------------------------------------------|----|
|      | of friction.                                                                                          | 4  |
| b.   | Explain : i) Angle of friction ii) Angle of response iii) Cone of friction                            | 6  |
| c.   | A uniform bar AB 5 m long weighing 280 N is hinged at B, rest upon 400 N block at A as                |    |
|      | shown in Fig Q7(c). If coefficient of friction is 0.4 for all contact surfaces, find the horizontal   | 10 |
|      | force P required to move the 400 N block.                                                             |    |
| 8 a. | What is meant by angle of repose? Show that angle of repose in equal to angle to friction.            | 8  |
| b.   | A small block of weight 1000N is paced on a $30^{\circ}$ incline with co-efficient of friction = 0.25 |    |
|      | as shown in Fig. Q 8(b) Find the horizontal force P required to the applied for :                     | 12 |
|      | i) Impending motion down the plane ii) Impending motion up the plane.                                 |    |
|      | UNIT - V                                                                                              |    |
| 9 a. | What is a projectile? Define the following terms:                                                     | 10 |
|      | i) Angle of projection ii) Horizontal range iii) Vertical height and iv) Time of flight.              | 10 |
| b.   | A cricket ball thrown from a height of 1.8 m above ground level at an angle of 30° with               |    |
|      | horizontal with velocity of 12 m/s and is caught by fielder at a height of 0.6 m above the            | 10 |
|      | ground. Determine the distance between the two players.                                               |    |
| 10a. | State and explain D' Alembert's principle.                                                            | 6  |
| b.   | Explain different types of impacts of two bodies.                                                     | 4  |
| c.   | Derive the three equations of motion with internal notations.                                         | 10 |







\* \* \* \*