

P.E.S. College of Engineering, Mandya - 571401 (An Autonomous Institution affiliated to VTU, Belgaum) First Semester, B.E. - Semester End Examination; Dec. - 2015 Engineering Mechanics

Time: 3 hrs
Max. Marks: 100
Note: i) Answer FIVE full questions selecting ONE full question from each unit.
ii) Missing data if any, may suitably assumed.

UNIT - I

1 a. Explain the following with next sketches :
(i) Force
(ii) Principle of transmissibility
iii) Arm of a couple
(iv) Lami's theorem.
b. Determine the magnitude and direction of the resultant of three forces converging at a point ' O ' as shown in Fig. Q 1(b).
c. Fig. Q1(c) shows a system of cables in equilibrium condition under two loads of 300 N and 500 N . Determine the forces developed in the different segments.
2 a . Find the resultant of the force system acting on a plate ABCD as shown in Fig. Q 2(a). Also
find the point where resultant will cut with X axis.
b. With neat sketch list different types of loads with their reduced concentrated load.
c. Determine the reactions at the supports for the beam shown in Fig. Q 2(c).

UNIT - II
3 a. What is centroid? Explain the significance of axis of reference for determining centroid.
b. From first principles obtain the centroidal distance of a quarter of a circle of radius ' R '.
c. Find the coordinates of centroid of a Lamina shown in Fig. Q3 (c) from OX and OYaxis.12
4 a. With neat sketch, explain axis of symmetry and its features. 4
b. Using method of integration determine the centroid of a right angle triangle of base ' b ' and
height ' h ' with respect to its base.
c. Locate the centroid of the Fig. Q 4 (C) with respect to ' O '

UNIT - III

5 a. With neat sketch explain the concept of moment of Inertia.
b. State and prove parallel axis theorem. 6
c. Determine the moment of Inertia about x-x axis of the Fig. Q 5(c) 10

6 a. Write a brief note on: Radius of Gyration and polar moment of Inertia. 4
b. Find the second moment of a rectangle of breadth "b" and depth "d" using method of integration about its base.
c. Find the moment of inertia of the section shown in Fig. Q 6(c) about the horizontal centroidol axis and also find the radius of Gyration about the same axis.

UNIT - IV

7 a. With neat sketch explain:
(i) angle of friction (ii) cone of friction.
b. Explain laws of static friction.
c. Determine the range of values that a weight ' w ' may have so that the block "A" of 1000 N shown in Fig. Q 7(c) will neither start up nor slip down the plane, take coefficient of friction to be 0.3 and assume smooth pulley.

8 a. Write a note on types of friction.
b. A block of 500 N on a horizontal plane is just moved by a pull of 180 N as shown in Fig. Q 8(b). Determine the coefficient of friction between floor and block.
c. A uniform ladder of length 10 m weighting 20 N is placed against vertical wall with its lower end 6 m from wall. The coefficient of friction contact surface is 0.30 . What is the frictional force acting on the ladder at the points of contact?

UNIT - V

9 a . With the help of flow diagram comment on the subdivisions of dynamics.
b. A stone dropped into a well is heard to strike the water after 4 seconds. Find the depth of the well. Given the velocity of sound $=350 \mathrm{~m} / \mathrm{s}, \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
c. A ball is thrown from a point ' O ' so as to just clear a wall of 4 m high and at a horizontal distance of 5 m from ' O '. If the ball falls 4 m behind the wall, find the velocity of projection of the ball and the angle of projection take; $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
10a. With instances explain work, power and Energy.
b. State and explain D'Alembert's principle.
c. A train weighing 200 tonnes starts from rest with an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$ and acquires speed of 108 KMPH . Find the Kinetic energy at the final speed and the average power required. If the power is shut off and the train is subjected to a retarding force equal to 10% of the weight, find the distance it will run before coming to rest. Consider; $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$

$F \operatorname{FI}$ (C)

FigQ Q(c)

Fig. Q. 3(c)

All dimensions in $m m$

