

Time: 3 hrs

Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

Physical Constants: Electron mass = 9.11×10^{-31} kg, Planck's constant = 6.63×10^{-34} Js, Electron Charge = 1.602×10^{-19} C, Boltzmann Constant = 1.38×10^{-23} J/K, Avogadro number = 6.025×10^{26} /k mole, Permittivity of free space = 8.854×10^{-12} F/m, Velocity of light = 3×10^{8} m/s.

UNIT - I

- 1 a. Write short notes on :
 - i) Venturimeter ii) Water discharging from large tank.
 - b. State and explain Bernoulli's equation. Derive an expression for Euler's equation of motion along streamline.
 - c. If the relative permittivity is 4.0, calculate its atomic polarizability. Given that sulpher in cubic form has a density of 2.08×10^3 kgm⁻³ and its atomic weight is 32.
- 2 a. Explain the following :

			8
i) Electronic polarization	ii) Ionic polarization	iii) Dielectric loss.	

- b. Define dielectric constant. Derive Clausius-Mosotti equation of dielectrics.
- c. The pipe near the lower end of a large water storage tank develops a small leak in a hole and a stream of water shoots from it. The top of water in the tank is 20 m above the point of leak.
 - (i) With what speed does the water rush from the hole?

(ii) If the hole has an area of $5 \times 10^{-2} \text{ m}^2$, how much water flows out in one second?

UNIT - II

3 a. Define group velocity and particle velocity. Show that group velocity is equal to particle velocity.
b. i) State and explain Wien's law and Rayleigh-Jean's law of radiation.
ii) Find the temperature at which the emissive power of a blackbody is four times its emissive power at temperature 1500 K.
c. Using uncertainty principle, prove that a free electron does not exist inside the nucleus.
4 a. i) State Heisenberg's uncertainty principle and illustrate it using γ-ray microscope.
ii) Find the energy of an electron in the ground state, when it is trapped in an infinite potential

well of width 2Å.

Contd...2

Page No... 1

7

5

7

5

8

P	13PH12/22 Page No 2				
b.	Setup one dimensional time-independent Schrodinger's wave equation.	7			
c.	Explain the distribution of energy in blackbody radiation spectrum.	5			
UNIT - III					
5 a.	What are the merits of Classical free electron theory? Explain how the Quantum free electron theory overcomes the failures of classical free electron theory?	8			
b.	Define Fermi factor and density of states. Show that the probability of occupation above the Fermi level is equal to non occupation probability below the Fermi level.	7			
c.	Obtain the relation between Fermi energy level (E_F) and energy gap (E_g) of an intrinsic semiconductor.	5			
	Define electron concentration. Obtain an expression for it in an intrinsic semiconductor. i) Explain the significance of Fermi level in p-type semiconductor.	8			
	ii) The electron mobility and hole mobility of silicon at room temperature are $0.17 \text{ m}^2 \text{V}^{-1} \text{s}^{-1}$ and $0.033 \text{ m}^2 \text{V}^{-1} \text{s}^{-1}$ respectively. Find the conductivity and resistivity of silicon, if its carrier density is $1.1 \text{x} 10^{16} \text{ m}^{-3}$.	7			
c.	Discuss the Fermi factor $f(E)$ at $E < E_F$, $E > E_F$ at $T = 0$ K and $E = E_F$ at $T > 0$ K.	5			
	UNIT - IV				
7 a.	i) Explain the variation of Physical properties from bulk to nanomaterials.ii) Write a note on carbon nanotubes.	8			
b.	b. Explain density of state for various quantum structures.				
c.	What are superconductors? Write a note on high temperature superconductors.	5			
8 a.	Write a note on :	0			
	i) Magnetic levitation ii) SQIDS.	8			
b.	Differentiate between Type-I and Type-II superconductors.	7			
c.	With a neat figure, write a note on Scanning Tunneling Microscope.	5			
UNIT - V					
9 a.	i) Explain spontaneous and stimulated emission of radiation.				
	ii) An optical fiber has clad of refractive index 1.50 and numerical aperture 0.39. Find the	8			
	refractive index of the core and the acceptance angle.				
b.	What are ultrasonics? How they are used to determine the flaws in a material by non destructive method of testing?	7			
c.	Discuss the various factors affecting the acoustics of buildings and give their remedies.	5			
10 a.	i) Describe the method of measuring velocity of ultrasonic waves in liquids.	0			
	ii) What are the requisites for a good auditorium?	8			
b.	What are Lasers? Explain laser welding and cutting processes with diagrams.	7			
c.	With the help of a block diagram, explain point to point optical fibers communication system.	5			

* * * *