P13	BPH12/22					Page	e No	1			
(EE	U.S.N										
	P.E.S. College of Engineerin	ng,	Ma	ndy	/a -	571	40	1			
(An Autonomous Institution affiliated to VTU, Belgaum)											
Second Semester, B.E. – Make-up Examination, July/Aug 2015											
	Engineering Phys (Common to all Branc										
Tiı	me: 3 hrs				Μ	lax. M	lark	s: 1	00		
	te: Answer any FIVE full questions, selecting ONE fu	-					10	_			
Velo K=	vsical Constants : Electron mass, $m = 9.11 \times 10^{-31}$ kg, E ocity of light, $c = 3 \times 10^8 \text{ms}^{-1}$, Planck's constant, $h=6.6 \times 1.38 \times 10^{-23} \text{ JK}^{-1}$, Avogadro number, $N = 6.025 \times 10^{23} \text{/ms}^{-1}$.	52 x i	!0 ⁻³⁴ J	s; Bol	ltzma	nn cor	istan	C; t,			
	UNIT - I										
	Define stream line and Turbulent flow. Write a note o	n Me	echani	ical er	nergy	and E	Effici	ency	of		
	fluids.										
	State Bernoulli's theorem. Mention its limitations.		,	1 7							
	A parallel plate capacitor consists of 2 plates each of a $\frac{1}{2}$										
	distance 1.5×10^{-3} m and filled with a dielectric of relat				6. Ca	alculat	e the	cha	rge		
	on the plates of Capacitor, if it is connected to a 100 V			•							
	Explain the term internal field. Derive an expressi	ion f	for in	ternal	fiel	d in c	case	of c	one		
	dimensional array of atoms in dielectric solids.										
	Define the terms dipole moment and polarization? Des		in br	ief							
	(i) ionic polarization and (ii) Electronic polarization										
c. I	Describe briefly conservation of mass and momentum	for fl	ow sy	stem.							
	UNIT - II										
	Define group velocity. Derive an expression for deB	rogli	e wav	eleng	th us	ing the	e con	icept	of		
-	group velocity.			.							
	Describe the Ultraviolet catastrophe. Explain how Plan										
	In a measurement that involved a maximum uncertain	•			•						
	was found to be 800 m/s. Calculate the corresponding	unce	ertaint	y invo	olved	in det	ermi	ning	its		
	position.										
	Define a wave function. Setup time independent	Sch	rodin	ger v	vave	equat	ion	in (one		
	limension.	_									
	State and explain Heisenberg's uncertainty principle. Il			-		•		-	-		
	A fast moving neutron is found to have an associated d										
	ts kinetic energy and the phase and group velocities			Ũ	lie w	vaves i	ignor	ing	the		
r	relativistic change in mass (Given mass of neutron = 1	.675	$x10^{-27}$	kg).							

P13PH12/22

UNIT - III

5 a.	Based on classical free electron theory derive an expression for electrical conductivity of	7							
	metals.								
b.	Define Fermi energy and Fermi factor. Discuss the probability of occupation of various	8							
	energy states by electrons at $T = 0$ K and $T > 0$ K on the basis of Fermi factor.	0							
c.	Explain the significance of Fermi level in intrinsic semiconductor.	5							
б. а.	Write a note on the significance of Fermi level in n-type and p-type extrinsic semiconductor.	8							
b.	Derive an expression for density of holes in an intrinsic semiconductor.	7							
c.	Find the temperature at which there is 1% probability that a state with energy 0.5 eV above	F							
	Fermi energy is occupied.	5							
UNIT - IV									
7 a.	Explain the construction and working of Scanning Tunneling Microscope with a neat	th a neat							
	diagram.	7							
b.	What are nanomaterials? Explain the properties and application of Carbon nanotubes.	8							
c.	Describe the BCS theory of superconductivity.								
8 a.	. Describe Type - I and Type - II superconductors.								
b.	Explain the two applications of superconductivity	0							
	(i) Superconducting magnet (ii) Maglev vehicle.	8							
c.	Discuss the various quantum structures.	5							
UNIT - V									
9 a.	Derive the expression for energy density of radiation using Einstein's coefficients.	7							
b.	With neat diagram explain (i) acceptance angle and (ii) numerical aperture. Obtain an	7							
	expression for numerical aperture in terms of refractive induces of core and cladding.								
c.	What are ultrasonic? Explain the experimental method of determining the velocity of								
	ultrasonics in liquids.	6							
10 a.	Discuss the different types of optical fibers with suitable diagrams.	7							
b.	Explain with a diagram how a flaw in solid material is detected by non destructive method	7							
	using ultrasonics.	7							
c.	Define stimulated emission of radiation.								
	The ratio of population of two energy levels is 1.059×10^{-30} . Find the wavelength of light	6							
	emitted at 300 K.								