

P15PH12

UNIT - III

5 a.	What are the assumptions of Classical free electron theory? Mention its merits and demerits.	8
b.	Define density of states. Derive the expressions for carrier concentration and Fermi energy of	7
	metal at 0 K.	/
c.	Calculate the intrinsic carrier density and conductivity of germanium semiconductor at	
	300 K. Given that; mobility of electrons = 0.36 m^2/Vs , mobility of holes = 0.17 m^2/Vs and	5
	energy gap of Ge = 0.7 eV. Assuming that $m_e^* = m_h^* = m_e$.	
6. a.	Explain the significance of Fermi level in an intrinsic semiconductor. Show that the Fermi	8
	level is at the middle of the band gap of an intrinsic semiconductor.	0
b.	Derive an expression for the density of holes in the valance band of an intrinsic semiconductor.	7
c.	Show that the sum of probability of an electron occupying an energy level 0.03 eV at a	5
	temperature of 300 K above the Fermi level and below the Fermi level is one.	5
	UNIT - IV	
7 a.	What are nanomaterials? Write a note on CNT's and mention few important applications.	8
b.	Explain the variation of density of states for different quantum structures.	7
c.	Explain Meissner effect.	5
8 a.	Discuss briefly BCS theory of superconductivity. Write a note on Magnetic levitation.	8
b.	Explain Type - I and Type - II superconductors.	7
c.	Explain the working of scanning tunnelling microscope with a neat diagram.	5
	UNIT - V	
9 a.	Define the following terms :	5
	i) Induced absorption ii) Spontaneous emission iii) Stimulated emission.	5
b.	Derive an expression for numerical aperture.	5
c.	Explain how a flaw in a solid can be detected by non-destructive method using ultrasonics.	5
d.	Explain the factors affecting the architectural acoustics of a building.	5
10 a.	Write a note on :	5
	i) Metastable state ii) Laser cavity.	5
b.	Define angle of acceptance of numerical aperture. Calculate the numerical aperture and the	
	acceptance angle of an optical fiber from the following data. Refractive index of the core is 1.55	5
	and the refractive index of cladding is 1.5.	
c.	Describe the experimental determination of velocity of ultrasonics in liquids.	5
d.	What is meant by reverberation time? Discuss Sabine' formula.	5