P15PH12 Page No... 1

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

First Semester, B.E. - Semester End Examination; Dec - 2016/Jan - 2017 **Engineering Physics** (Common to all Branches)

(Common to all Branches)						
7	Time: 3 hrs Max. Marks: 100					
N	lote: Answer FIVE full questions, selecting ONE full question from each unit.					
	Physical Constants: Electron mass= $9.11 \times 10^{-31} \text{kg}$, Planck's constant = $6.63 \times 10^{-34} \text{Js}$,					
	Electron Charge = 1.602×10^{-19} C, Boltzmann Constant = 1.38×10^{-23} J/K, Avogadro number =					
	$6.025 \times 10^{26} / K$ mole, Permittivity of free space = $8.854 \times 10^{-12} F / m$, Velocity of light = 3×10^8 m/s.					
	UNIT - I					
1 a.	Define the terms 'Stream line flow' and Turbulent flow. Derive Euler's equation of motion along a stream line.	8				
b.	. Write a note on mechanical energy and efficiency of fluids.	7				
c.	The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate					
	the electronic polarizability of sulphur. Given;	5				
	Density of sulphur = 2.07 gm/cc and atomic weight = 32.07.					
2 a.	What is internal field? Derive an expression for internal field in the case of solids.	8				
b.	. Define dielectric polarization. Explain briefly electronic polarization and orientation	7				
	polarization.	7				
c.	State Bernoulli's theorem. Mention its limitations.	5				
	UNIT - II					
3 a.	Define group velocity. Derive an expression for deBroglie wavelength using the concept of group velocity.	8				
b.	. State and explain Wein's law, Rayleigh-Jeans law and Planck's law of reduction.	7				
c.	In a measurement that involved a maximum uncertainty of 0.003%, the speed of an electron					
	was found to be 800 m/s. Calculate the corresponding uncertainty involved in determining its	5				
	position.					
4 a.	Assuming the time independent Schrodinger wave equation, discuss the solution for a					
	particle in one dimensional potential well of infinite height. Hence obtain the normalized	8				
	wave function.					
b.	. State and explain Heisenberg uncertainty principle. Show that the electron does not exist	7				
	inside the nucleus of an atom by uncertainty principle.	7				

c.	A fast moving neutron is found to have an associated deBroglie wavelength of $2x10^{-12}$ m.	
	Find its kinetic energy and group velocity of the deBroglie waves using the relativistic	5
	change in mass. Mass of Neutron = $1.675 \times 10^{-27} \text{ kg}$.	
	UNIT - III	
5 a.	Define density of states. Derive an expression for the density of states for conduction	8
	electrons for unit volume of metal.	o
b.	What are the conduction electrons? Explain the failures of classical free electron theory.	7
c.	What are intrinsic and extrinsic semiconductors? The intrinsic carrier density at room	
	temperature in Ge is $2.37x10^{19}/m^3$. If the electron and hole mobility are $0.38~m^2V^{-1}s^{-1}$ and	5
	0.18 m ² V ⁻¹ s ⁻¹ respectively. Calculate the resistivity.	
6. a.	Derive an expression for the electron concentration in an intrinsic semiconductor.	8
b.	Write a note on the significance of Fermi level in n-type and p-type semiconductors.	7
c.	Show that occupation probability at $E=E_F+\Delta E$ is equal to non-occupation probability at	5
	$\mathbf{E} = \mathbf{E_F} - \Delta \mathbf{E}$.	5
	UNIT - IV	
7 a.	Explain the variation of density of states for different quantum structures.	8
b.	With a neat diagram, explain the construction and working of scanning tunneling	7
	microscope.	7
c.	What is superconductivity? Write a note on BCS theory.	5
8 a.	Write short note on:	8
	i) Superconducting magnet ii) Maglev vehicle.	o
b.	Discuss Type-I and Type-II superconductors.	7
c.	What are carbon nanotubes? Mention any two properties and two applications of nanotubes.	5
	UNIT - V	
9 a.	Describe the construction and working of a semiconductor laser diode.	5
b.	Explain the experimental method of determining the velocity of ultrasonics in liquids.	5
c.	Explain the acoustic requirements of a good auditorium.	5
d.	Describe the basics of point-point communication system using optical fibres.	5
10 a	With neat diagrams explain the step-index multimode and graded index multimode fibres.	5
b.	Explain how flaw in a solid can be detected using ultrasonics.	5
c.	Derive the relations between Einstein's coefficients.	5
d.	Explain the various factors that affect architectural acoustics.	5