

U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Second Semester, B.E. - Semester End Examination; June - 2016 **Engineering Physics** (Common to all Branches) Time: 3 hrs Max. Marks: 100

Page No... 1

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit.

Physical Constants: Electron mass = 9.11×10^{-31} kg, Planck's constant = 6.63×10^{-34} Js, Electron charge = $1.602 \times 10^{-19} C$, Boltzmann constant = $1.38 \times 10^{-23} J/K$, Avogadro number = 6.025×10^{26} /k mole, Permittivity of free space = 8.854×10^{-12} F/m, Velocity of light = 3×10^8 m/s.

UNIT - I

1 a.	Explain stream line flow and conservation of mass. Obtain the expression for equation of	8
	continuity for a fluid.	0
b.	Explain Bernoulli's equation in a fluid. Mention the applications of venturi tube.	7
c.	A solid elemental dielectric has a density 3.08×10^{28} atoms/m ³ and its relative permittivity is 4.	~
	Calculate electronic polarizability.	5
2 a.	Explain four types of polarizations.	8
b.	Derive the equation for internal field in solids for one dimensional array of atoms.	7
c.	The radius of the aorta is about 0.01 m and the blood flowing through it has a speed of about	
	0.3 ms ⁻¹ . Calculate the average speed of the blood in the capillaries using the fact that although	_
	each capillary has a diameter of about 8×10^{-6} m, there are literally millions to them so that their	5
	total cross section is about 0.2 m^2 .	
	UNIT - II	
3 a.	Explain Planck's law, Wien's law, Rayleigh-Jeans law and Stefan-Boltzmann law.	8
b.	Explain group velocity. Derive the expression for deBroglie wavelength using the concept of	7
	group velocity.	7
c.	An electron is bound in a one dimensional box of width $4x10^{-10}$ m. Compute the energy and	-
	deBroglie wavelength of ground and first excited states.	5
4 a.	Explain the significance of wave function. Setup time independent Schrodinger's wave	0
	equation.	8
b.	State and explain Heisenberg's uncertainty principle. Show that the electron does not exist	7
	inside the nucleus.	7
c.	Calculate the deBroglie wavelength of a 1000 kg automobile travelling at 100 m/s and a 0.1 kg	-
	bullet travelling at 500 m/s.	5

P15PH22

UNIT - III

5 a. What are the merits of chemical free electron theory? Explain the failures of it.	8		
b. Obtain an expression for density of energy states in metals.	7		
c. Find the relation between Fermi level and energy gap of an intrinsic semiconductor.	5		
6 a. Distinguish between conductors, semiconductors and insulators on the basis of band theory	·.		
Explain the Fermi level in an intrinsic semiconductor.	8		
b. Derive an expression for density of charge carriers in an intrinsic semiconductor.	7		
c. Find the temperature at which there is 10% probability that a state with energy 0.5 eV above	e 5		
Fermi level will be occupied.	3		
UNIT - IV			
7 a. Explain 0 - D, 1 - D, 2 - D and 3 - D nano systems with examples.	8		
b. Explain the types, properties and applications of carbon nano tube.	7		
c. Write a note on SQUIDS.	5		
8 a. Explain Meissner's effect and discuss magnetic levitation.	8		
b. Define critical current and isotopic effect for superconductors. Discuss BCS theory of supe	er 7		
conductors.			
c. Describe working of scanning tunnelling electron microscope.	5		
UNIT - V			
9 a. Explain the term 'Stimulated emission' and obtain an expression for energy density of radiatio	n 8		
in terms of Einstein's coefficients.	_		
b. Discuss different types of optical fibres.	7		
c. The volume of a room is 600 m^3 . The total area of a room is 460 m^2 and the average absorptio	on 5		
coefficient is 0.24. Calculate the reverberation time.			
10 a Explain the terms 'reverberation time' and 'absorption coefficient'. Discuss the various factor	rs 8		
affecting the acoustics of an auditorium.	C		
b. How ultrasonics is used to determine the flows in a material by non destructive method of testing?	7		
testing?			
c. Find attenuation in optical fibre of length 500 m, when a light signal of power 100 mW emerge out of fibre with 90 mW.	5		