P13ME32 <i>Page No 1</i>					
U.S.N]				
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B. E Mechanical Engineering Semester End Examination; Dec 2014 Material Science and Metallurgy Time: 3 hrs					
<i>Note</i> : <i>i</i>) Answer FIVE full questions, selecting ONE full question from each Unit. <i>ii</i>) Assume suitably missing data if any.					
Unit - I					
1. a. Define the following:					
i) Co-ordination Number ii) Atomic packing factor iii) space lattice	10				
iv) Crystal grain v) Grain boundary					
b. Derive relation between lattice parameter "a" and radius of atom "r" for FCC structure ar Show that APF for FCC is equal to 74%.	nd 10				
2 a. List the crystal defects and explain screw dislocation with neat sketch.	10				
b. Define diffusion and explain limitation of 1 st law of diffusion.	4				
c. Explain the affect of the following factors on diffusion:					
i) Temperature ii) Atomic radius iii) crystal structure.	6				
Unit - II					
3 a. Draw stress and strain curve for mild steel and explain various salient points on the curve.	10				
b. Define true stress and strain and give the corresponding equations.					
c. Give the procedure to evaluate stiffness of highly non-linear material.	6				
4 a. Sketch and explain the procedure to draw S-N curves with help of Fatigue-testing apparatus.	10				
b. How to prevent fatigue failure of materials which do not exhibit fatigue limit	3				
c. Explain the various stages followed by the material during creep failure.	7				
Unit - III					
5 a. What is a solid solution and give two examples.	3				
b. Explain governing Rules of alloy formation (Hume Rothery's Rule).	7				
c. Construct a phase diagram for copper-Nickel system melting point of copper is 1080°C ar	nd				
Nickel is 1450°C. The table below shows liquidus and solidus temperature for various allo	ру				
composition.	10				

Alloy Composition	Solidus Temperature	Liquidus temperature
20% Cu	1090°C	1200 °C
40% Cu	1120 °C	1280 °C
60% Cu	1200 °C	1350 °C
80% Cu	1300 °C	1400 °C

Determine the following for an alloy composition of 70% copper and 30% Nickel.

- i) Estimate range of temperature for phase transformation.
- ii) Presence of liquid phase and solid phase at a temperature of 1200°C.

6	a.	Draw Iron-Carbon equilibrium	m diagram and label different phases present and also explain	10		
		Invariant reactions.		10		
	b.	Explain steps involved in con	struction of TTT diagram for Hypo eutectoid steel.	10		
			Unit - IV			
7	a.	Explain full annealing heat tr	eatment process with respect to aim, phase transformations and	10		
		applications with help of tem	ns with help of temperature and percentage of carbon diagram			
	b.	What is surface hardening an	d explain any one method of surface hardening.	10		
8	a.`	Define hardenability. Explain	joming-End-Quench test.	10		
b. Describe age hardening of Al and Cu alloys.						
			Unit - V			
9	a.`	Write short notes on:				
		i) Galvanic Cell	ii) Electrode Potentials	20		
		iii) Cathodic Protection	iv) Stress corrosion cracking.			
1()	Write short notes on:				
		i) High Carbon steel	ii) Gray cast Iron	20		
		iii) Aluminium and its alloys	iv) Copper and its alloys.			

* * * * *