U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)
Third Semester, B.E. - Mechanical Engineering
Semester End Examination; Dec - 2016/Jan - 2017
Basic Thermodynamics

Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each unit.

ii) Use of Thermodynamics data hand book is allowed.

	u) Ose of Thermodynamics data hand book is allowed.			
	UNIT - I			
1 a.	Define the following terms:			
	(i) Control volume (ii) Quasistatic process	8		
	(iii) Zeroth law of thermodynamics (iv) Reversible process.			
b.	What is an adiabatic process? Derive an expression for work done in an adiabatic process.	8		
c.	Explain microscopic and microscopic point of views in the study of thermodynamics.	4		
2 a.	Give the thermodynamic definition of work and heat.	4		
b.	Explain with a neat sketch an example to indicate the difference between heat and work flow.	6		
c.	Work supplied to a closed system is 160 kJ. The initial volume is $V_1 = 0.8 \ m^3$ and the			
	pressure of the system varies $P = 7 - 3v$, where P is in Bar and v is in m^3 . Determine the final	10		
	volume and pressure of the system.			
	UNIT - II			
3 a.	Define first law of thermodynamics. Show that for a closed system undergoing a cyclic			
	process, $\Delta Q = (E_2 - E_1) + \Delta W$.	6		
b.	Define enthalpy and show that enthalpy $H = U + PV$.	6		
c.	An engine has a volume of 60 litres and a compression ratio of 14.2 to one. At the beginning			
	of compressions stroke, the pressure and temperature are 1 Bar and 80°C. At the end of			
	compression process the pressure is 30 Bar. The charge is now heated at constant pressure	8		
	until the volume is doubled. Determine, index of compression, temperature at the end of			
	compression, and work done.			
4 a.	What is steady flow process and what are the conditions to be satisfied by a steady flow			
	process? Given an example.	6		
b.	Define specific heats, and show that $R = C_P - C_V$.	6		
c.	12 kg of air/ minute is delivered by a centrifugal air compressor. Air enters at 12 m/s and the			
compressed air leaves at 90 m/s. The increase in enthalpy of air passing through				
	compressor is 150 kJ/kg. Find the power required to drive the compressor. Also determine the	8		
	ratio of inlet to outlet diameter, assuming that both pipes are at the same level.			

UNIT - III

5 a.	Define the following terms:						
	(i) Dryness fractions	(ii) Two property rule	8				
	(iii) Sub cooled liquid	(iv) Triple point of water.					
b.	With a neat sketch, explain ten	perature-volume diagram and name the salient points (water).	6				
c.	A throttling calorimeter is use	ed to measure the dryness fraction of the steam in the steam					
	main when the steam is flowing at a pressure of 6 Bar. The steam after passing through the						
	calorimeter comes at out of 10	00 kPa pressure and 120°C temperature. Calculate the dryness	6				
	fraction of steam in the main.						
6 a.	With the help of neat sketch, calorimeter.	explain the working of a combined separating and throttling	8				
b.	Sketch the temperature-enthalp	y diagram for water and name the salient points.	4				
c.	Steam at 10 Bar and 0.95 dryne	ess is available. Determine the final condition of steam in each					
	of the following cases:						
	(i) 160 kJ of heat is removed at constant pressure						
	(ii) It is cooled at constant volu	me till the temperature inside falls to 140°C.	8				
	(iii) Steam expands isentropic	ally in a steam turbine developing 300 kJ of waste per kg of					
	steam when the exit pressure o	f the steam is 0.5 bar.					
		UNIT - IV					
7 a.	Define two statements of secon	nd law of thermodynamics and comment on them.	6				
b.	Show that all reversible engin	es have the same efficiency when working between the same	6				
	two reservoirs.		U				
c.	There are three reservoirs at te	emperature 827°C, 127°C and 27°C in parallel. Reversible heat					
	engine operates between 827°	C and 127 °C and a reversible refrigerator operates between					
	127°C and 27°C respectively.	500 kJ of heat is extracted from the reservoir at 827 °C by the	8				
heat engine and 250 kJ of heat is abstracted by the refrigerator from		at is abstracted by the refrigerator from the reservoir at 27°C.	O				
	Find the net amount of heat d	elivered to the reservoir at 127°C. Sketch the arrangement of					
	reservoirs.						
8 a.	Define heat engine and heat p	ump or refrigerator. Write an expression for the efficiency of	6				
	heat engine and heat pump.		O				
b.	What is a perpetual motion ma	chine of second kind? Explain with neat sketch the working of	6				
	PPM-II kind.		J				
c.	Two Carnot engines work in s	eries in between the source and sink temperature of 550°K and	8				
	350°K If both engines develop	equal power determine the intermediate temperature	3				

UNIT - V

9 a.	Define entropy and show that entropy is a property of the system.	6	
b.	Show that $T.ds = dU + Pdv$ starting from first law of thermodynamics and hence derive an		
	expression for change in entropy.	6	
c.	Calculate the change in entropy of one kg of air expanding polytropically in a cylinder behind	8	
	a piston from 7 bar and 600°C to 1.05 Bar. The index of expansion is 1.25.	0	
10 a	State and prove inequality of Clasusious.	6	
b.	State and prove principle of Increase of entropy.	6	
c.	2.5 kg of air at a pressure of 2 bar and 26°C forms a closed system; which under goes a		
	constant pressure process. With a heat addition of 650 kJ. Find the final temperature, change	8	
	in enthalpy, change in internal energy, work transfer and change in entropy.		

* * *